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1. INTRODUCTION 

 
Space and time are commonly regarded as the forms of existence of the 
real world, matter as its substance.  A definite portion of matter 
occupies a definite part of space at a definite moment of time.  It is in the 
composite idea of motion that these three fundamental conceptions enter 
into intimate relationship. 

Hermann Weyl 
Space Time Matter (1921) 

 

The amount and complexity of information we must deal with is constantly accelerating.  

The general introduction of computing power into the hands of ordinary people has not simpli-

fied this problem; it has compounded it.  We can now collect and calculate enormous bodies of 

data that we must somehow assimilate.  This information ranges from the esoteric to the 

ordinary: astrophysics, nuclear physics, fluid dynamics, meteorology, demographics, 

geographic information systems, systems management, marketing, finances, and entertainment.   

Traditionally, graphics have been used to depict information—from cave walls to 

computer screens.  We have outstripped the capabilities of flat displays to present information 

(e.g., Friedhoff & Benzon, 1989), and are moving into the third dimension in space for display.   

The general model for three-dimensional displays is stereoscopic, in which slightly 

different images are presented to each eye to produce the perception of space.  Three-dimen-

sional stereoscopic displays are available in a number of forms (cf., Okoshi, 1976).  These typi-

cally require special glasses which many users find cumbersome.  Knowledge of how we 

perceive space can be used to generate the perception of space from a two-dimensional surface 

without glasses.   A useful projection surface is a computer-driven cathode ray tube (CRT).   
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Depth displays are frequently developed by using rules of thumb and trial-and-error to 

make design decisions.  Descriptions of space, and of the visual system that perceives space, 

can be restructured in order to be understood more readily.  Using this restructuring I propose 

to demonstrate that a useful spatial display can not only be created from a flat screen, but that 

the perceived depth can be controlled by design, using commerically available equipment.   

1.1. NEEDS 

The accessibility of any technology can be described as follows: 

GOOD 

FAST 

CHEAP 

Pick Any Two. 

This description applies at several levels: development, purchase, and use.  The 

operating target for the system to be developed is that it 1) be relatively inexpensive to 

purchase, 2) provide adequate but not necessarily photorealistic three-dimensional spatial 

renderings in close to real time, and 3) be usable by those not skilled in computer graphics.   

1.2. SYSTEM REQUIREMENTS 

The display objective is to develop a process that will operate with: 

• a conventional personal computer 

• a conventional non-interlaced CRT display (pixel based) 

• no special optics or glasses 

• a graphics accelerator circuit card. 

The model user is a person who sits at a desk or workstation with a keyboard and CRT in 

front of him/her.  The system is useful for normally sighted people in a normal office environ-
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ment with low to moderate light levels.  It requires no more room than a conventional personal 

computer and operates in essentially the same environment on a desk top.   

1.3. EXECUTION 

The objective of this study was to develop a working three-dimensional display and to 

evaluate the possibility of predicting and controlling people's perception of spatial structure, 

based on theoretical considerations.  Given the many possible applications of such a display, 

there was no optimal display; guidelines for developing a good display for different situations 

are presented later in this dissertation.  These guidelines are based on a reformulation of the 

description of the early visual system and of the structure of three-dimensional space.  The 

display software was developed by the investigator.   

1.4. OVERVIEW 

This spatial display process is based on the phenomenon of the perception of structure-

from-motion.  The phenomenon was reported by Wallach and O'Connell (1953) and was given 

the name "kinetic depth effect" (KDE).  This concept has been incorporated into the more 

generalized expression structure-from-motion (SFM), which includes, in addition to KDE, the 

stereokinetic effect (SKE, Musatti, 1924), structure from optic flows, and motion parallax.  

These concepts can be included under a description of spatial geometries and an aperture model 

of the visual system, which together formulate the three-dimensional display process.   

The perception of depth from stereopsis results from binocular parallax.  

Neurophysiologically, this process converges on some central nervous system (CNS) structures 

common with those active in structure-from-motion (Nawrot & Blake, 1989, 1991; Tittle & 

Braunstein, 1993; Cornilleau-Pérès & Droulez, 1993).  Parallax (e.g., structure-from-motion) 

provides an unscaled vectorfield in which the relative vector lengths and signs correspond to 

sequence in depth for the features in the visual scene.  This vectorfield is scaled independently 
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from the vector generation process, through monocular factors.  The product of the vectorfield 

and the scalarfield produces the perception of spatial structure (Fig. 1.1).   

 

Figure 1.1. Vector-scalar product. 

How the vectorfield is developed in the perceptual system through structure-from-motion 

will be presented in four parts: 1) an aperture model of the brain's visual system; 2) the nature 

of space itself; 3) perception of affine spatial structures; and 4) the vectorfield display that 

generates structure from motion.   

A goal of this disertation is to develop a means of displaying information on a two-

dimensional screen that people will perceive as three-dimensional, and to predict the nature of 

that perception.   



  

5 

2. STRUCTURE-FROM-MOTION 

I have divided the disscusion of the perception of spatial structure-from-motion parallax 

into three sections: 

1. A model of the visual perceptual system 

2. Concepts of spatial structure 

3. Implementation of a structure-from-motion display. 

2.1. APERTURE MODEL OF VISUAL PERCEPTION 

I shall present a model of perception based on the scaling of affine structures which will 

lead to a three-dimensional display.  The display creates the perception of spatial structure 

through the independent generation of affine structure and structural metrics.  An affine struc-

ture is an unscaled structure.  Affine transformations of Euclidean space, and of the structures 

which lie in it,  will be discussed below.  The displayed space is mapped into an affine space 

created by structure-from-motion (SFM) with decoupled axes.  Affine, or unscaled, space is 

discussed below (Section 2.2.).  The perception of affine structure is generated through SFM.  

Structural metrics are generated through ordination, cardination, and metrification.  These 

metric terms will be defined below (Section 3).  The hypothesis is that structure and relative 

scale (metrics) can be independently manipulated under carefully prescribed conditions, 

demonstrating the independence of the processes of the perception of affine structure and 

metrification.  The experiment independently varies the depth vectorfield and depth scalar, 

demonstrating that uniform variation of the vectorfield (ratio-ed change over the visual field) 

produces no change in perceived depth, but that changes in the scalar fields control the 

perceived relative depth.   

The perception of spatial structure employs eight principles, which will be explained in 

the course of this dissertation: 
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1. Structures are perceived as affine transformations of Euclidean space 

(E3) in all directions, not just depth.   

2. Stable affine transformations of the same space are all perceptually 

equivalent, although geometrically different.   

3. Orthogonality is perceived through rotational coupling and the inherent 

coordinates of object structure(s).   

4. Affinely perceived structures require metric scaling. 

5. There is a hierarchy of affine structure scaling levels: sequence, 

ordination, cardination, metrification, and absolute scaling.  These 

will be discussed below.   

6. Affine structures are subsequently scaled principally through the con-

gruence of recursive elements and/or motion.   

7. Perspective can be approximated locally as affine scale and shear-

strain transformations of Euclidean space.1   

8. The same hierarchies of metric structure perception that apply to an 

object within an affinely defined subspace can also apply between 

subspaces that are individually locally affine transformations of 

Euclidean space.   

The understanding of visual perception is by no means complete.  Visual perception is 

more than a geometric process in which a scene is re-mapped onto the retina.  The concept of 

reaching out with the eye to grasp the external world begs the question of how visual 

                                                      
1Locally, perspective space can be modeled as multiplied by a scale factor for distance and a shear-strain deformation 

to compensate for being off the visual line-of-sight.   
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perception occurs.  Under normal circumstances, the structure and scaling of visually perceived 

objects is relative to the object, rather than to the observer.  How does an object—or a scene—

scale itself?   

Pre-17th century models of visual perception presumed that the external world was 

directly grasped by the central nervous system through the sense receptors.  It was the Arab 

scientist Ibn al-Haytham (or Ibn al-Haitham, Latinized to Alhazen, 965-1041) who first 

proposed that vision was the process of admitting light into the eye, not the process of emitting 

something (Gray, 1989, pp. 44-45).  A central question of his time was how one is able to per-

ceive something large through an aperture as small as the pupil of the eye.  al-Haytham was the 

first to employ geometrical principles in the study of vision.  He was not able to reconcile the 

inverted image on the retina with veridical erect perception; hence the lens was an attractive 

organ of sensation.  He concluded that the lens was the sensitive organ, and that vision was 

based on the reinforcement of optical rays striking the lens perpendicular to the lens' curved 

surface that allowed directionality to light sensitivity.  He recognized that if the direction from 

which light emanated could not be discerned, it would not be possible to perceive the external 

structure.2   

Leonardo da Vinci (A. D. 1452-1519) was also unable to reconcile the inverted image 

problem.  He conceived of an eye that maintains the erect image through refraction, projecting 

it into the (presumed) hollow optic nerve to be carried to the liquid-filled ventricles of the 

brain, where sensation occurred.  da Vinci formulated an eye as a passive camera obscura that 

"piped" the image up into the brain.  Some sort of homunculus viewed the image.   

It was not until 1583 that Felix Plater (Crombie, 1964, p. 4) proposed that the retina, not 

the lens, was the photosensitive organ.  Kepler ushered in the 17th century and what Crombie 

                                                      
2The compound eye of the insect solves the problem in a manner not dissimilar from that proposed by al-Haytham.   
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terms the "mechanistic hypothesis" (Crombie, 1964) with the concept that the eye can be stud-

ied as an optical instrument.  Kepler followed the processes of visual perception to the point 

where the image is projected onto the retina, leaving it to the "natural philosophers" to deduce 

that which was beyond mathematics (i.e., beyond geometry).  Geometry relates to images, not 

to perception.   

The transition from a holistic view to a reductionist view was, in the opinion of Crombie 

(1964), fundamental to the development of the scientific method.  In the study of visual percep-

tion this transition was embodied as a change from theories of the direct perception of the ex-

ternal world to a commitment to reduce vision and other natural phenomena to mechanistic 

processes.  This change, which occurred at the end of the Renaissance in the 17th century, 

made science as we know it possible, for it provided an organized structure for investigation 

wherein one could deduce that which was, and was not, knowable with current methods.  

Descartes reduced the processes of perception to the extreme, maintaining that in animals there 

was no perception at all: stimulation produced motion directly.  Perception was, if you will, an 

epiphenomenon occurring only in humans.   

We are currently in the midst of blending the reductionist viewpoint with a modified 

holistic viewpoint.  Chaos theory maintains that the behavior of the whole cannot always be 

accurately predicted from the behavior of the parts.  The ensemble may behave in an unex-

pected way (e.g., Ruelle, 1989; Stewart, 1989).  Stewart (1989) argues that until recently we 

studied only those problems that could be reduced to (linear) parts.  The rest were considered 

"special cases."   

This historical sketch puts the current work in visual perception in perspective.  Gibson 

(1950) maintained that one could not deduce the behavior—perception—of the whole from the 

sum of reduced-case visual phenomena.  Perception, he argued, was of the whole.  He did not 

provide an effective working alternative for the analysis of visual perception, however.   
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The development of an understanding of the processes of visual perception has entailed 

understanding the underlying neural processes.  The retinal image is no longer envisioned as 

"projected" over the optic nerve back into the central nervous system.  The retina performs sig-

nificant local transformations on the patterns and changes in light.  As outlined below, the 

ganglion cells are effectively overlapping transforming sub-apertures with differing filter or 

gain characteristics.  The image itself is virtually an epiphenomenon; we do not perceive the 

retinal image.  Instead, perception involves coordinated transformations through many 

subapertures.   

Just how the perception of spatial structure occurs is still largely a mystery.  As a first 

step, the external structure is optically mapped onto the retina.  This is straightforward.  

Mapping from one coordinate system to another is conceptually analogous to this piping func-

tion.  Visual perception does not simply entail processes of re-mappings from an external, 3-

dimensional coordinate space onto a 2-dimensional retinal coordinate space.  It appears that 

retinal coordinates are of limited use in the central nervous system (CNS).  For instance, we can 

fuse images on the two retinae even when corresponding points do not fall on homologous parts 

of the retinae (Burt & Julesz, 1980).  This fusion is necessary for the perception of three-

dimensional structure.  Fusion follows three-dimensional organization.  Using a binocular 

display with disparity to produce depth perception, Green and Odom (1986) found that corre-

sponding points that were matched in depth in two successive images fused in apparent motion.  

Subjects presented with two image correspondence alternatives that were equidistant retinally 

formed same-depth correspondence (versus different-depth) 100% of the time.  On the basis of 

retinal coordinates alone, correspondences of targets at the same and different depths were 

equally likely.  Image correspondence was linked to 3-D proximity via a disparity metric in the 

binocular displays.  The visual coordinates are not Euclidean, but affine (stretchy).   

The perception of spatial structure of an object becomes a three component process:  
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1. The perception of affine structure 

2. Perceptual scaling of a scene or object relative to itself  (this is the perception 

of metric structure; "metric" will mean relative scale within the object in 

this discussion)   

3. Perception of true size or the absolute scaling of the relatively scaled object.   

A coordinate system is an invention, a convenient method of describing a space.  There 

is, of course, no absolute reference system.  In the study of perception, one can consider several 

possible references: the observer's eye, the scene, and the coordinates relative to each object in 

the scene.  A self-referenced, egocentric coordinate system appears under reduced cue condi-

tions.  To maintain such a reference system operationally in the real world, visual phenomena 

such as displays, movies, and photographs require compensating "computations" in order to 

achieve veridical perception.  In spite of many models, the CNS does not appear to be a 

"computationally driven" system, at least in the most literal sense of the term.  It is a system of 

thresholds, diffusions, and neurochemistry.   

2.1.1. Models of the Central Nervous System 

The operation of nervous tissue, e.g., neuropile, is generally modeled as either computa-

tional or as properties of materials.  In a computational model, neuropile is considered to 

perform algorithms.  In a material model the neuropile behaves in a certain manner as a result 

of its properties.  The computational model is currently the predominant one, its explorations 

attempting to discern the algorithms that underlie the processes of the central nervous system 

(e.g., Marr, 1982; Poggio & Girosi, 1990).  Modeling the behavior of a system with an algo-

rithm does not mean that the system executes an algorithm.  The conceptual difference between 

a computational model and a properties model is exemplified in a planetary system.  The 

planets move in orbits about the sun because of the behavior of masses in motion in gravita-
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tional fields.  There is no algorithm being performed.  The behavior, i.e., orbital motion, can be 

computationally modelled.  Physicists do not presume that their computational model describes 

a computational operation that produces plantary motion.  Similarly, the operation of a lens can 

be described mathematically, but the lens does not perform a mathematical algorithm.  A lens 

behaves in a certain manner with respect to light based upon the physical properties of the light 

and lens.  CNS properties models are more likely to include biochemistry, diffusion, electro-

chemical potentials, ions, and glial cells in addition to neurons and synapses (e.g., Nobili, 1987; 

Xu & Li, 1986).   

The difference between computational and properties models is sometimes reduced to 

semantics.  Dictionary definitions of "computational" specifically refer to mathematical proc-

esses and algorithms.  Mead (1989) proposes a new definition of "computational" to bridge this 

difference.  His definition relates to the behavior of non-linear analog circuits.  His models are 

local mathematical models, i.e., at the level of the neuron.  He then develops silicon subcircuits 

to represent neuronal properties in an attempt to develop ". . . an ideal synthetic medium in 

which neurobiologists can model organizational principles found in various biological systems" 

(p. xii).  Mead's models are essentially "properties" models of nervous tissue which incorporate 

the organization of its constituent units.   

The value of an aperture model is that it permits algorithmic or computational modelling 

of processes without mistaking the algorithm for the actual operational behavior of the 

(nervous) system.  Neuropile is an extremely anisotrophic and non-linear medium, as is a 

computer chip.  This gross similarity is not to be mistaken for operational similarity.  An 

aperture model is essentially a "properties of a medium" model.   

We can consider a visual display as projecting the components of spatial information to 

the apertures of the visual system.  Two types of apertures will be considered:  

1) the optical aperture synthesized from the two eyes and  
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2) the neurophysiological aperture. 

First, we shall consider the general principles of apertures, and then apply them to the 

human visual system.   

An aperture is a "hole through which information passes."  The concept is used in optical 

systems, radar, and radiotelescopy, among others.  Significantly, the concept of an aperture is 

used in systems that transmit radiant information (e.g., slide projectors), receive information 

(e.g., cameras) and those that do both (e.g., radar systems).  An aperture may gather and rear-

range information, and it may filter out information, but, strictly speaking, it does not add in-

formation to the flux.  I shall review briefly the principles as they relate to the aperture model.  

First, it is useful to describe the essential components of a simple aperture.   

2.1.2. Aperture Principles 

The general principles of apertures can be demonstrated with a simple idealized thin lens 

system.  The information flux (i.e., light) flows through the lens aperture; consequently, the 

aperture is generally normal to the flow of information.  Most apertures perform some trans-

formation on the flux transmitted through it.  For instance, a convex lens focuses light by 

bending the light toward the lens axis: the farther from the axis in the aperture the light falls, 

the more that it bends the light. Another way to describe the transformation performed by a 

convex lens is to say that it produces a variable phase delay in a wave front falling across the 

aperture.  The phase delay decreases across the aperture from the center (maximum delay) to 

the edge (minimum delay).   

A thin lens system is depicted in Fig. 2.1.  At the base of an arrow an object point source 

of light, Po, at a distance f o from a lens, L, projects light to the lens aperture, A, which is 

focused by the lens to an image point, Pi, which is a distance  f i behind the lens.  The center of 

the lens is the nodal plane, Pn, of the lens.  The diameter of the lens defines its aperture, A, as a 



  

13 

circle of diameter D.  For a thin lens with a focal length of  f , the relationship between focal 

length and image and object positions is: 

 1         1          1 
—  =  —    +  — . (Eq. 2.1) 
  f          f i         f o 

 

Figure 2.1. Simple lens system. 

Now consider two systems each with two object points, one point, 

 Pf , which the system focuses as an image on a screen, and another, Pr , behind Pf , which the 

system focuses in front of the screen (Fig. 2.2).  Of the two systems, the system with the larger 

aperture (Fig. 2.2a) more sharply focuses the images, producing a sharper image, Pf ', of Pf  on 

the screen, while also focusing the image, Pr ', of Pr away from the screen, producing a larger 
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blur circle for it on the screen.  Thus we can say that the larger system aperture provides better 

spatial resolution not only of the points, but also between them in depth.  This ability of a 

system to sharply define sources (e.g., to image a feature, to resolve between two features) is a 

measure of the qualities of the aperture.  One can think of the larger aperture diameter as being 

able to resolve better than the smaller one.  This is also reflected in the f - stops of camera 

lenses.  The f - stop is the focal length of the lens divided by the diameter.  The lower the f -

stop number, the sharper the image in space and the shallower the depth of field.   

Figure 2.2. Behavior of two simple optical systems. 

System a) with a larger aperture, b) smaller aperture. 

A lens forms an image by focusing the light falling across its aperture A onto a screen.  

Several things can affect the quality of the image.  As mentioned above, the size and shape of 

the aperture will have direct effects.  For high quality optics, the larger the aperture, the better 
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the image.  The light emanating from a point is coherent and in phase, meaning that all the 

wavefronts are aligned, or synchronous.  [This is true even for a point source of "incoherent 

light"; the coherence path length is just short.]  If the light waves arrive in focus with the phase 

relationship maintained, the image quality will be limited by the diffraction characteristics of 

the aperture.   

Coherence is a measure of the degree to which spatially or temporally separated 

phenomena have a stable known or knowable phase relationship with each other.  Phenomena 

can be coherent without being synchronous.  This distinction is significant.  A laser operating 

in the proper mode (TEM00) produces photons that are all in phase; thus they are not only 

coherent, the wavefronts are also synchronous—meaning at all points across the waveform, all 

of the wave points are simultaneously of the same phase.  For many purposes the output of a 

single mode laser can be considered as one large photon.  The raw, unmodulated, continuous 

laser beam itself carries virtually no information.  A hologram produced with a laser records the 

variations in the phase relationships of the light reflected from (or transmitted by) an object.  

The surface configuration of the object modulates the wavefront.  The wavefronts in the holo-

gram plane are still coherent, but they are no longer synchronous.  A great deal of information 

is carried in the phase relationships between the points in space.   

Coherence is a description of the relationships among events separated in space and/or 

time.  The ability to preserve that relationship is the coherence function (Gagliardi & Karp, 

1976, pp. 419-426).  We can speak of an aperture coherence function, a spatial coherence func-

tion, and of the coherence function of the medium.  Over any given region of space and/or time 

there is a spatial coherence function describing the relationship of fields, or potential fields, 

across that space.  Frequently a spatial coherence function is made across a plane 

approximately normal to the direction of propagation of the flux (e.g., light, microwaves).  The 

flux propagates through some medium which can distort and scatter.  The coherence function of 
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a medium is a description of its ability to propagate a spatial coherence function.  One medium 

that is of particular importance is an aperture.   

Returning to our thin lens model, an ideal convex lens will transform plane waves falling 

essentially normal to its aperture, A, into converging bowl-shaped wavefronts.   If the 

coherence function of the lens is good, i.e., it has no little bubbles or variations in refractive 

index, the coherence of the wavefront will be preserved, producing a sharp well-defined image.  

If the coherence function across the lens is not good, a poor image will result (i.e., the Hubble 

telescope).  The lens can perform transforms other than focusing.  For example, it can filter out 

some wavelengths, or it can have different focal lengths for different wavelengths, causing 

chromatic aberrations in the image.   

An aperture is described in terms of parameters, e.g., geometry, frequencies (spatial and 

temporal), polarization, integration times, etc.  The performance of an aperture is a function of 

those parameters.  An aperture does not have to be round.  For example, radar antennae are 

typically rectangular.  The large width provides a high resolution for position of both the outgo-

ing beam and the return reflections in the horizontal plane.  The small height provides poor 

angular resolution for elevation.  The projected beam is a vertical fan or plane (Fig. 2.3) that 

will intersect aircraft over a wide range of elevations, and that will provide good horizontal 

angular resolution for position.  A symmetrical, small beam would have to be scanned both 

vertically and radially.  As this fan-beam is swept only radially, it provides faster searching at 

the expense of vertical resolution.  Other means are used to determine aircraft elevation.   
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Figure 2.3. Radar beam. 

Thus far we have considered apertures of single elements: a lens and a (microwave) re-

flective radar antenna.  These concepts have direct application to the visual system.  Apertures 

also can be synthesized out of smaller subapertures.  We turn to them now.   

2.1.3. Multiple Subaperture (Array) Systems. 

A simple lens aperture can be divided in two.  If we place a narrow strip of occluding 

material, such as black tape, across the lens, almost the same image will be formed as with the 

unoccluded lens.  A small amount of light will be lost—the amount occluded by the tape.  If 

instead of using tape, we physically cut the lens in two and set the two halves in exactly the 

same relationship as they had in the original undivided lens, the light from each half will 

combine as in the image plane as before.  Following this logic, the original aperture, A, could 

be divided into subapertures.  This approach has been used in some of the new large-aperture 
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mirror telescopes, which are made up of a number of sub-mirrors which manufacturers figure 

(grind) to form a single large mirror.  To be effective, these submirrors must preserve the 

spatial coherence function of the incoming light.   

Smaller subapertures may not completely fill the aperture space.  The subapertures may 

be spatially separated to sample the information from different vantage points.  The information 

from the separated subapertures can be combined to synthesize a single large aperture.  Spaced 

subapertures can produce fine resolution limits in such distributed arrays.  Radio telescopes 

synthesize a large aperture from a collection of smaller radio telescope dishes.  Rather than 

attempt to locate each subdish in some idealized geometry, the position of each dish is compen-

sated for by time- or phase-lagging the signals from each by an appropriate amount to maintain 

the aperture coherence function within desired limits, typically a small fraction of a wave-

length.  Some radar arrays do not move at all, but synthesize the entire aperture including its 

movement with a number of phase-adjusted elements (small antennae).  These are called 

"phased-array radars" (Steinberg, 1976).   

Multi-element array apertures may not completely fill the total aperture extent, as 

described.  An extreme example is very-long-baseline (VLBL) radiotelescopy, in which there 

may be thousands of kilometers between the individual radio dishes.  For maximum resolution, 

the effective coherence function across the aperture must be maintained.  For some array 

apertures, the locations of the elements may not be precisely known, or the propagation delays 

in the cables may be less than ideal or subject to variability.  Scientists and engineers use tech-

niques in the design of multiple element aperture systems to establish and maintain the aperture 

coherence function.  Such systems are called adaptive or self-cohering.  Typically they use 

signals of known coherence characteristics (Steinberg 1976, pp. 212-252).  We will see that 

such techniques may be valuable as applied to the visual system.  Frequently array apertures 

use an aperiodic or random placement of elements.  This reduces artifacts which may result 
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from a regular, periodic arrangement (Steinberg 1976, pp. 123, 139).  Multi-element arrays can 

have coupling between the array elements, which may be beneficial or detrimental, depending 

upon the specifics of the situation.  Mutual coupling may increase the sensitivity to low level 

signals at the cost of local phase resolution and subsequent spatial resolution.   

2.1.4. An Aperture Model of the Early Visual System. 

The most obvious application of the concept of apertures is to the eye itself.  It is useful 

to first apply aperture concepts to a single eye so that the visual system can be more easily 

understood under this rubric.  The aperture and element concepts applied to the eye, and to the 

receptive fields in the visual cortex, provide a useful context for discussing the perception of 

image features in motion and under stereopsis.  From this, we can define how the display will 

project onto these apertures to produce the perception of spatial structure.   

2.1.4.1. Optical Aperture 

The obvious aperture components of the eye are the cornea, lens, and pupil.  The cornea 

and lens form the initial light flux transforming components, and the pupil, formed by the open-

ing in the iris, determines the aperture size of the individual.  The optical system produces a 

nearly diffraction-limited image, meaning that it passes those spatial frequencies that could 

theoretically be passed by an aperture of the pupil's size.   

The two eyes acting together can be considered a single synthesized aperture (Schneider 

& Moraglia, 1992).  As we have discussed, an aperture serves to gather information at a 

distance.  Binocular vision can be considered to have a spatially distributed aperture.  Consider 

the description of the lens that was subdivided into two subapertures by placing a strip of black 

tape across the center of the lens.  Let us extend that tape into a mask that covers the entire 

lens, but has two small holes near opposite edges (Fig. 2.4).   Light emanating from a point (P) 

will fall across the entire lens mask, including the two subapertures.  The light will be focused 
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to a point (P').  Either aperture alone will produce a focused image of the point (Fig. 2.5).  The 

diameter of the apertures—the pupils of the eyes—is considerably smaller than the spacing 

between two eyes (2###).  As a result, the ability of either of the two apertures (A1, A2) alone to 

localize the image of the point in depth is much less than that of the two apertures together.   

 

Figure 2.4. Mask with two subapertures (holes). 

The two apertures, A1 and A2, spaced at distance ### on either side of the center, C, of 

the lens can be considered subapertures of the entire binocular aperture, A  (Fig. 2.5).  The 

depth-resolving power of the pair is significantly greater than of either of the single 

subapertures if the coherence of the two images (retinal ganglion cell transforms, actually) can 

be maintained.  Consider a system with two apertures that images a central point, P, flanked by 

two points at a different depth plane.  The projected image of the central point is P'.   
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Figure 2.5. Cross-section of binocular aperture. 

The binocular aperture, A, can be used to demonstrate the generation of the depth vector-

field, V .  The image of the three points, with P in the middle, projected from the two subaper-

tures is depicted in Fig. 2.6 that depicts the image planes for each of the apertures separately.  

The upper trio of dots is projected by subaperture A1, the lower by subaperture A2.  Note that 

the central point, P', has a different position relative to the two flanking points in the two 

images.  The difference between the two locations of the central P' point relative to the 

flanking points can be represented as a vector, V 1,2.  The length of this vector is proportional to 

the difference in depth between the two flanking points and the center point.   

For this limited group of points, only the relative positions are important.  The actual 

retinal coordinates are of little consequence, as long as the correspondence between the points 

is maintained.  Thus, the pattern of dot spacings needs to be generated in each visual system 

subaperture.  The patterns from the two eyes together must then have a coherence that is main-

tained by the visual system in order for the correspondences and patterns to be compared to 

create the local vector.  As discussed below (2.1.4.2.), the patterns within the subapertures, and 
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the subsequent coherence between the patterns from the subapertures, are possibly saccadically 

and/or  motion-initiated coherent changes in the retinal images.  The patterns can be modeled 

from wavelet transformations created by the retino-cortical neural systems.  The retinal coordi-

nates are less important than the relationships represented in the local phase relationships.   

Optically, each eye subaperture can be modeled as a lens with a prism, since the base 

separation is considerably larger than the pupil.  Each eye performs a transformation that 

creates its "image structure" field.  The two fields are then overlaid, analogous to projecting the 

images through prisms so that they overlap with some plane of correspondence between 

images.  Overlaying the two transformed images provides a map of the local differentials.  This 

constitutes a disparity vectorfield (hereafter referred to as the vectorfield, V ).  In the visual 

system it is not the images that are overlaid, but the transformations of the images through the 

retino-cortical system apertures into local patterns (e.g., wavelets, as discussed by Mallat, 1991; 

Mallat & Zhong, 1992).   

The disparity vectorfield, V , can be generated through stereopsis and/or through motion 

parallax.  Instead of transformed images gathered simultaneously through two subapertures, 

 

Figure 2.6. Single vector. 
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images can be "acquired" serially in time.  The differences between temporally separated 

images that are due to relative motions between scene and observer can similarly give rise to 

vectorfields correlated to scene depth spatial structure.  Thus, we can consider vision to acquire 

information through a spatiotemporal aperture.   

2.1.4.2. Neurophysiological Aperture 

The retina is ontologically part of the central nervous system (CNS), since it is develop-

mentally an evagination of the brain.  The light flux is projected back onto the retina, which has 

rods and cones as the primary light-to-ionic activity transducers (photoreceptors).  Transducers 

transform flux or activity of one kind into another kind.  The rods are sensitive to low light 

levels.  Because all rods have the same spectral response characteristics, they do not discrimi-

nate colors.  The cones have a lower sensitivity to light and fall into three categories with 

different spectral responses; therefore, the cone system provides color information at higher 

illumination.  The photoreceptors are not evenly distributed over the retina.  The cones are 

more centrally concentrated.  The greater the distance from the fovea, the lower the 

concentration of cones.  The distribution has some radial asymmetry and individual variability 

(Curcio, Sloan, Packer, Hendrickson, & Kalina, 1987).  Thus, the transduction aperture does 

not have uniform characteristics over its extent.  The ionic, hence electrotonic, coupling 

between the rod and cone systems varies as a function of light level (Uehara, Matthes, 

Yasumura, & LaVail, 1990; Yang & Wu, 1989; Guth, 1991; Lamb & Pugh, 1990).   

The activity from the photoreceptors within the retina modulate the activity of ganglion 

cells through a matrix of interconnecting cells.  Each ganglion cell projects a single axon back 

within the optic nerve to the lateral geniculate nucleus (LGN).  The photoreceptors are subaper-

ture elements for the ganglion cells.  There are 100 times more photoreceptors than ganglion 

cells, indicating convergence.  The convergence is not a simple one; there is considerable proc-

essing and coupling in the retina (Dowling, 1987, pp. 42-80).  One can consider each ganglion 
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cell as a subaperture of the entire retinal aperture.  These subapertures are overlapping, not 

simply tessellated; thus each photoreceptor will influence more than one ganglion cell.  The 

retinal area, or aperture, which can affect the behavior of a ganglion cell is called its receptive 

field.  These are complex subapertures with specific sensitivities to the spatio-temporal charac-

teristics of the light upon the photoreceptors (Dowling, 1987, pp. 33-41, 93-123; Lee, Pokorny, 

Smith, Martin, & Valberg, 1990; Ratliff, 1965; Shapley & Victor, 1986).  Thus, like a lens, the 

aperture created by a ganglion cell receptive field performs a transform.  The greater the 

distance from the fovea, the larger the receptive field of a ganglion cell.  The ganglion cell 

axons project to the LGN, whose neurons project activity back to the primary visual cortex 

(Mignard & Malpeli, 1991; Shou & Leventhal, 1989; Gazzaniga, 1989; Maunsell, Nealy, & 

DePriest, 1990).   

Recall that in multi-element electronic arrays, the preservation of phase structure is 

important.  Phase is the timing relative to a particular frequency.  Temporal structure in 

perceptual information processing, and the concomitant importance of phase, is highly impor-

tant.  It is worthwhile to discuss the importance of coherence and synchrony from a perceptual 

and biological standpoint.  Three questions can be raised: 

1. Is the time structure of image events maintained in the early visual system? 

2. Can differences in the time structure of an image event be perceived? 

3. Is the maintenance of time structure important to perception? 

The answers to Questions 1 and 3 appear to be Yes.  The answer to Question 2 is No.  We can 

show that the time structure of image events is maintained in the early visual system, and that 

time structure cannot be readily perceived directly, although it does have perceptual conse-

quences.   

In response to Question 1—whether temporal structure is maintained in the early visual 

system—there is good evidence supporting a positive response.  Temporal coherence can be 
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maintained, and there is information encoded in the temporal structures.  The early visual 

system does provide a medium with a high coherence function.  At the optic disk, synchrony 

for image changes as reflected in ganglion cell activity has been disrupted by the trans-retinal 

traverse time differences.  The path lengths of the ganglion cell axons from the somas to the 

optic disc differ significantly.  The propagation times of the neural action potentials (spikes) 

across the retina to the disc subsequently differ by up to 4 ms.  Yet, by the time the optic nerve 

has terminated in the LGN, the spikes are back in phase to within less than 100 microseconds 

difference (Stanford, 1987).  The resychronization over the optic tract requires different propa-

gation speeds over different axons, which is possible (Waxman, 1980; Mirsky & Jessen, 1990), 

and which would be aided by mechanisms that maintain synchronization or phase-lock once it 

is achieved, such as was demonstrated by Katz and Schmitt (1940) through manipulations of 

electrotonic coupling between axons.  Whether this medium coherence function is developed 

genetically or through experience is open to question (Kuffler, 1953; Meister, Wong, Baylor, & 

Shatz, 1991).  The frequent saccades of the visual system would provide the type of syn-

chronous stimulus useful in a self-cohering system.  Saccades provide simultaneous, retina-

wide transients which can be used for establishing and maintaining coherence in the visual 

pathway (Reynolds & Skinner, 1964).   

There is evidence that the retinal-LGN system provides a medium with a coherence func-

tion that maintains important perceptual information.  McClurkin, Optican, Richmond, and 

Gwane, (1991) have demonstrated that the temporal structure of information flowing from the 

retina to the LGN is of significance.  They propose that the visual system uses multiplexed 

temporal codes to carry and process visual information (Gwane, McClurkin, Optican, & 

Richmond,  1988; McClurkin, Gwane, Richmond, Optican, & Robinson, 1988; Richmond, 

McClurkin, Gwane, & Optican,  1988). Multiplexed temporal codes is a process in which in-
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formation is transformed into time-based codes that are superimposed in time over the same 

channel.   

To Question 2, there are few examples that demonstrate that fine temporal structures can 

be perceived directly.  At a gross level, one can note that with no change in visual image on the 

retina, perception fades (Kelly, 1969, 1981; Saleh, Tulunay-Kessy, Ver Hoeve, & Hom, 1991).  

Diamond (1979) demonstrated that the human observer is sensitive to irregularities in flicker 

patterns.  This is a sensitivity to phase within a subaperture, not between subapertures, so it 

does not completely answer the question.  The perception is one of "difference," not of 

temporal structure.  If one considers Diamond's (1979) work in the context of overlapping 

ganglion subapertures of different response characteristics, it is positive evidence, though weak.   

Burr (1979) demonstrated perceptual consequences of temporal structure with vernier 

acuity.  Vernier acuity is a measure of the ability to perceptually resolve a misalignment of two 

line segments.  Due to hyperacutity, for stationary stimuli this resolution is finer than the spac-

ing between photoreceptors (Kulikowski, 1978; Stigmar, 1971; Westheimer, 1975).  Vernier 

acuity is typically demonstrated by presenting subjects with line segments that are not quite 

aligned (Fig. 2.7).  Burr used line segments in apparent motion.  The corresponding segments 

were aligned in space, but one was delayed sightly relative to the other (less than 1 ms).  

Subjects perceived a vernier offset during apparent motion.  This could only be due to temporal 

structure, as the stimulus had no physical offset in the display.   

 

Figure 2.7. Vernier offset. 



  

27 

The work of Lappin and his colleagues (Lappin & Bell, 1976; Lappin, Wason, & Akutsu, 

1987; Mowafy, Blake, & Lappin, 1990) on the perception of correlation between rapidly 

moving, retinally separated dots indicates that perception is sensitive to temporal structure.   

Question 3 follows logically from the second: even if one cannot directly perceive 

temporal structural differences in the retinal image, does temporal structure have perceptual 

consequences?  The very fact of the perception of structure-from-motion argues strongly for the 

importance of the preservation, perhaps in some other form, of temporal event relationships 

within the visual image.  Observing this effect does not explain how it occurs, however.  

Apparent motion of a single dot produced by the sequential short illumination of a line of two 

or more dots is the perceptual result of temporally structured visual events (Morgan & 

Thompson, 1975; Morgan, 1976; Hogben & Di Lollo, 1985; Chang & Julesz, 1983a, 1983b; 

Navon, 1983).   Apparent motion is governed by more than the temporal events, however.  A 

Ternus display is a line of dots in which the central dots are always on, and the end dots flash in 

alternation.  People perceive either a central stationary set of dots with a single dot which 

moves between the ends of the line, or a line that moves laterally one space as a single unit.  

Petersik and Rosner (1990) could change the perceived apparent motion in a Ternus display by 

manipulating the context.  The perception could be altered from that of a group of dots moving 

back and forth one dot space to that of a stationary central group with a single dot moving from 

one end of the group to the other by the visual linkages made from the central dots to other 

fixed dots.  If the links moved to indicate that the entire group moved, that was the perception; 

if the links were stationary, the central group was stationary.  Perception involves all of the 

visual elements, not a few in isolation (e.g., Dick, Ullman, & Sagi, 1987; Stoner & Albright, 

1993).  This is consistent with an aperture model that is responsive to the relationship of events 

across the aperture.  Other models combine inputs from modules to achieve the same results.  

The latter involves considerable computational complexity for complex scenes; as the number 
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of elements in a scene increase linearly, the number of relationships among elements rises ex-

ponentially.  Aperture models improve in performance as more correlated information appears 

across the aperture.   

Wilson and Anstis (1969) demonstrated a change in visual delay as a function of illumi-

nance.  As an image is comprised of different luminances, it would appear that the timing to the 

optic disk may be subject to luminance-delay effects that could cause image elements to lose 

synchronicity.  As the retina performs differential transforms, it is more responsive to contrasts 

than luminance, however.  Luminance-caused differential timing delays between the eyes 

produce the Pulfrich effect (Krekling, 1973; Williams & Lit, 1983), causing a plumb bob 

swinging in a fronto-parallel plane to appear to follow an elliptical trajectory when a dark glass 

is placed in front of one eye.  Mere delays between the eyes without concurrent motion do not 

produce such an effect, as there are CRT-based stereoscopic systems which present the images 

to the eyes in alternation.  The dark glass used to produce the Pulfrich effect decreases the 

image intensity to the entire eye, presumably delaying the entire image.  The slight time delay 

of one image relative to the other with differences between the simultaneous images supports 

the importance of temporal structure in visual perception.  We can safely say that there are 

perceptual consequences to the temporal structure of events in the retinal image.   

The image events on the retina are transformed and passed on to the LGN, where they 

are subsequently transformed and passed back to the primary visual cortex.  Significant work 

has been done to explore the nature of the relationships between optical activity on the retina 

and the location and nature of the response in the visual cortex.  Pioneering work was done by 

Hubel and Wiesel (1962, Wiesel & Hubel, 1965) who discovered the receptive fields, binocular 

interaction, and functional architecture in the cat's visual cortex.  Neurons in the visual cortex 

are responsive to specific stimuli over specific receptive fields on the retina.  The cortical 

neurons can be considered to have apertures that perform specific transforms on patches of the 
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retinal image, with the transforms distributed throughout the cells of the retina, LGN, and 

cortex.   

As discussed in the context of lenses, transformation apertures can attenuate some infor-

mation in order to accentuate other information.  A lens may filter out certain wavelengths of 

light to provide better contrast in the image.  Cortical receptive fields may be considered in the 

same manner (e.g., Stork & Wilson, 1990; Robson, 1966; Burr, 1980; Hess, Pointer, & Watt, 

1989; Burr, 1980; Harvey, Rentschler, & Weiss, 1985; Snyder, Bossomaier, & Hughes, 1986).  

Wavelet transform theory (Daubechies, Mallat, & Willsky, 1992; Mallat, 1991; Mallat & 

Hwang, 1992; Mallat & Zhong, 1992) may provide a useful model of how some receptive field 

subapertures, each with particular spatiotemporal response characteristics, may be combined.  

[c.f. Loeb, White, & Merzenich, 1983; Reichart, 1971; Koskol, 1991; Foley, 1991; Goodman & 

Russell, 1971]  There are parallels in the auditory system (e.g., Green, Richards, & Onsan, 

1990; Moore, Glasberg, & Schooneveldt, 1990; Henning & Gaskell, 1981).  This pattern of 

repeated sequences of transformations through apertures is frequently found in optical systems.   

It is worthwhile at this point to restate the three principal questions relating to the impor-

tance of temporal structuring in visual perception, and to summarize the conclusions with 

respect to structure-from-motion displays: 

1. Is the time structure of image events maintained in the early visual system?  

Yes. 

2. Can differences in image event time structure be perceived?  No. 

3. Is the maintenance of time structure important to perception?  Yes. 

A SFM-based display must have an accurately controlled, well defined temporal structure.  The 

implementation of the three-dimensional display must include careful specification and control 

of spatio-temporal structures.   
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2.2. CONCEPTS OF SPATIAL STRUCTURE 

Since the display is intended to produce spatial perception, let us first discuss the nature 

of space.  This material is quite complex and has been dealt with more completely by others 

(e.g., Gray 1989; Weyl, 1921).  My intent is to provide a common set of definitions and 

relationships that will be useful later.   

The discussion will explain the following concepts: 

2.2.1. The Nature of Euclidean Space 

The normal world in which we live is locally Euclidean space.  This is frequently repre-

sented in a Cartesian coordinate system having three orthogonal directions with unit vectors of 

equal lengths in each of the directions.  Generally we think of one plane parallel to the ground, 

 Affine spaces are perceptually equivalent.   

 Euclidean space is an affine space, but not 

 all affine spaces are Euclidean.   

 THEREFORE, an affine representation of a  

 Euclidean space is perceptually 

  equivalent to the Euclidean space.   

 We live in an Euclidean space;  

 THEREFORE, affine representations of that 

 space are perceived as Euclidean. 



  

31 

defined by two axes at right angles to each other, and a third axis orthogonal (perpendicular) to 

the ground.  This is purely a convention of convenience, of course, as Cartesian axes need only 

be at right angles to each other.  I mention this "ground based" orientation to make a point: we 

live on a sphere.  The rules of spherical geometry approach those of plane geometry (Cartesian) 

only when the patch of ground is small compared to the size of the globe.   

An important concept in geometry is that of parallel lines.  The "problem of parallels" 

(namely, a proof for them) has been explored extensively over the centuries (Gray, 1989).  

Euclid's fifth postulate relates to a definition of parallel lines: 

 
If a straight line falling on two straight lines makes the interior angles on the same 
side less than two right angles, the two straight lines, if produced indefinitely, meet 
on that side on which are the angles less than the two right angles. 

Gray, Ideas of Space, 1989, p. 28 

Attempts to use this postulate to prove the existence of parallel lines have not been wholly 

successful; they typically use a "seesaw" proof, wobbling the orientation of one line with 

respect to the other until only one orientation can be found that does not produce an intersec-

tion.  (Indeed, some "non-Euclidean" geometries deny the existence of parallel lines.)   

The existence of parallels is an important concept in the study of spatial perception.  

Gray (1989, p. 29) states that "without parallels it is hard to do very much geometry at all, 

because parallels are needed to transport equal angles about."  And, by extension, transporting 

equal angles about in space also refers to transporting objects about in space without distortion.  

Underlying the perception of spatial structure is the ability to relate one region to another.  

This, we shall see, is related to moving objects from one region to another, either directly or by 

inference.   

Thomas Reid in 1764 (Gray, 1989, p. 71) set forth what he purported to be a new geome-

try, a hemispherical geometry, centered around the observer's eye.  His geometry reflected his 
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interests in vision.  In actuality, he was offering a different coordinate system, not an alternative 

description of space.  One must be careful to differentiate between alternative descriptive 

geometries and alternative spatial manifolds.  Einstein, for instance, offered an alternative 

description of space itself (Weyl, 1921) using a Riemannian geometry.   

2.2.1.1. Orthonormal Space 

Normal Euclidean vector space (E3) can be described as an orthonormal basis of three 

vectors (Wylie & Barrett, 1982).  These vectors are orthogonal (in E3, perpendicular), meaning 

that none of the three vectors can be derived from the addition of components of the other 

vector(s), and the basis set has equal lengths for each of the unit vectors.  This is the normal 

Cartesian coordinate system.   

2.2.1.2. Coupling of Axes 

There is an implied coupling among the axes in Euclidean space (E3).  The location of 

any point in space can be unambiguously defined with three values in a Cartesian coordinate 

system describing E3.  (Hereafter, unless noted, I will use E3 to denote Euclidean space 

described with a Cartesian coordinate system.)  There are, however, six degrees of freedom for 

an object in E3: three for position (using some feature to represent the position of the entire 

object) and three for orientation or rotation relative to the axes.   
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An important concept in mathematics is the transformation.  A transformation is a 

mathematical operation that changes a description of some state or process into another form 

(Bracewell, 1990).  For example, the rotation of a rigid object in E3 is a linear transformation 

that preserves the absolute values of, and the angles between, vectors (Korn & Korn, 1968, pp. 

471-472).  This can be considered the "rotational coupling" between pairs of axes.   

Consider an E3 space with axes e1, e2, and e3.  e3
 projects up, out of the plane.  A stick 

of length l is lying in space with one end anchored at the origin, O, as illustrated in Fig. 2.9a.  

The projection of the stick onto axis e2 is l sin α1.  The projection of the stick onto e1 is l cos α

1.  Because the stick is lying in the e1 - e2 plane, the projection up onto e3
 is zero (0).  If the 

stick rotates around the origin in plane e1 - e2, to an angle ###2, as shown in Fig. 2.9b, the stick 

now projects onto e1 an amount l cos α2 and onto e2 by an amount l sin α2.  Thus we can say 

that in a rigid space, e1 is coupled into e2 through rotation around the e3
 axis.  When the stick 

rotates from ###1 to ###2, the change in projection along e1 is l (cos ###2 - cos ###1), and the 

 

Figure 2.8. Normal Cartesian coordinates for 
Euclidean space. 

An orthonormal space.  O is the origin of 
this coordinate system. 
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change in projection along (and consequently depth along) e2 is l (sin ###2 - sin α1).  When the 

stick is lying parallel to either axis, instead of at an intermediate angle between the two, the 

rotational coupling is the smallest.  Consider the coupling into e2.  For a unit length (to make 

the analysis easier), the projection onto e2 can be written: 

e2 = sinα . (Eq. 2.2) 

The first derivative of e2 will indicate the rate at which e2 changes as a function of small 

changes in angle α at any given angle:   

de

d
2

α
α= cos  . (Eq. 2.3) 

Similarly, the rate of change of the e1 projection for changes in α is: 

de

d
1

α
α= − sin  . (Eq. 2.4) 

We can see that the effect of the rotational coupling of small changes of e1 (de1) into changes 

in e2 (de2) is not the same for all points of angular rotation (###).  The changes can be 

expressed in terms of the effect due to a change in α (dα) at a particular α.  When α is small ( α 

→  0) then the rates of change approach as limits: 

de

d
2 1

α
→  (Eq. 2.5) 

and  

de

d
1 0

α
→ . (Eq. 2.6) 

When α approaches 90° (the stick is parallel with axis e2) then  
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de

d
2 0

α
→  (Eq. 2.7) 

and  

de

d
1 1

α
→ − . (Eq. 2.8) 

 

Figure 2.9. Rotational coupling in Cartesian 
coordinates. 
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The stick can be translated away from its original position touching the origin (O) to lie 

on a line parallel with the original in the plane e1 - e2, and this property of coupling through 

rotations around axes parallel to the e3 axis will be maintained.  [Thus, we see the importance 

of the concept of parallel.]  In a rigid orthonormal space, therefore, the axes are rotationally 

coupled with unitary vectors.  Proffitt, Rock, Hecht, and Schubert, (1992), made a similar 

analysis relative to the stereokinetic effect (SKE) versus the kinetic depth effect (KDE) with 

geometric forms.   

A rigid object, with its own Cartesian coordinate system, that is rotating in space will 

rotationally couple the scaling between axes.  Thus, a rotating object could self-scale for the 

observer, simultaneously defining (in this case, scaling) the space around itself.  The rotational 

coupling between e1 and e2 means that as a unit vector rotates in a plane its projections onto e1 

and e2 change relative to each other.  The relative changes in these projections of (above) can 

be expressed as  

de

de
2

1

= − tanα . (Eq. 2.9) 

As a tangent function is nonlinear, this is a nonlinear relationship.  This means that the deriva-

tion of the metric of a structure in Euclidean space from rotational coupling would be computa-

tionally intensive because the coupling is not constant, but is a function of the angle αααα  (e.g., 

Hoffman & Bennett, 1986, 1985; Bennett, Hoffman, Nicola, & Prakash, 1989).   

2.2.2. Affine Space 

It is possible to mathematically define spaces which are not orthonormal.  Of particular 

interest are those spaces which are affine transformations of Euclidean space.   

Affine (adj.): of, relating to, or being a transformation (as a translation, a 
rotation, or a uniform stretching) that carries straight lines into straight lines 
and parallel lines into parallel lines but may alter distance between points 
and angles between lines (geometry). 
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Webster's Ninth New Collegiate Dictionary, 1987. 

Notice that the concept of parallel lines is central to the definition of an affine transformation.  

A unit vector is a vector that is one unit long in a particular direction.  In orthonormal space 

(Euclidean), all unit vectors, ui, are equal: all unit vectors have been normalized to the same 

length.  As an example of an affine transformation, each of the unit vectors can be multiplied 

by a different constant (###1, ###2) to define new unit vectors (ui'):  

u u1 1 1
' = α  ,   (Eq. 2.10) 

u u2 2 2
' = α  . (Eq. 2.11) 

In this example, u1', u2' no longer form an orthonormal basis.  A basis is a minimum vector set 

which covers, or spans, the space.   u1', u2' form a basis, but are not normal (i.e., unit vector 

lengths are no longer all the same.)   

An example of a non-affine transformation is the changing of one unit vector length 

according to the position along another axis: 

u e u2 2 1 2
' = α�� . (Eq. 2.12) 

In this case a line plotted parallel to the e1 axis will not remain parallel to it after the non-affine 

transformation, but will diverge from it and will intersect the origin (when e1 = 0).   

First, we will consider de-coupling between axes rather than the rotational coupling 

discussed above.  Then we will consider cases in which the unitary vectors are not equal.   

2.2.2.1. Decoupled Axes 

Consider a Nekker cube (Fig. 2.10).  It is normally rendered with the front and back faces 

lying in frontoparallel planes.  If this were a true orthonormal space, the side lines (edges) 

would be either invisible or would converge to a slightly smaller rear face (due to perspective).  

Yet the Nekker cube is invariably perceived as a cube, with perceptual ambiguity about which 
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face is the front and which is the back.  Mathematically this cube can be considered a 3-dimen-

sional parallelopiped in a 3-dimensional vectorfield manifold (Weyl, 1921, p20).  We will find 

the concept of a vectorfield to be important in discussions of visual perception.  A "3-dimen-

sional vectorfield manifold" is an affine space.  An affine space is defined by linear dimen-

sions; a unit vector parallel to the x-axis has the same length no matter where in the space it is 

located.  For our purposes, an affine space can be transformed into a Euclidean space through 

only affine transformations.  Euclidean space is a specific member of the family of affine 

spaces; all three of its unit vectors are equal and at right angles to each other.   

Alternatively, the deformation of the cube can be considered a shear-strain (Fig. 2.11) 

affine transformation of the space.   
 

The shear-strain component is specified with respect to two axes which are 
perpendicular in the undeformed body and is designated by the symbol γγγγ  with two 
subscripts to indicate these axes.  Shear strain is defined as the tangent of the change 
in angle between these two originally perpendicular axes. 

 Crandall & Dahl, 1959, p. 147 

The shear strain (Synge & Schild, 1949) transformation of the Nekker cube space can be 

resolved into two components, an e2 - e1 component and an e2 - e3 component.  The e2 - e1 

component (###2,1 ) can be considered an uncoupled rotation of axis e2 around e3
 with no rota-

tion of the e1 axis.  Similarly, the e2 - e3 component can be considered a rotation of axis e2 

around the e1 axis.  In such a transformed space, a stick lying along the e2 axis still has no pro-

jection onto the e1 axis.  If the space were to undergo repeated or continuous shear-strain trans-

formation(s), the rotation of the e2 axis in space would not be coupled into the other axes.  We 

can consider such a series of affine transformations as equivalent to a decoupling between axes.  

The manner in which rotations couple between axes serves to scale the axes relative to each 

other.  Under shear-strain transformations there is no rotational coupling of the shear-strain 

induced rotation of an axis; therefore, there is no relative scaling among some of the axes.  The 
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object undergoes shear strain with the space; therefore, an object in a shear-strain transforming 

space, i. e., undergoing a continuous shear strain transformation, may not self-scale in all axes 

(e.g., DeLucia & Hochberg, 1991).   

 

 

Figure 2.10. Nekker cube. 
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2.2.2.2. "Unequal" Axes 

Thus far we have considered spaces in which the unitary vectors, ui, are of equal length.  

In an affinely transformed or transforming space, this is not necessary.  In the shear strain 

deforming space, the scale in the e2 direction is uncoupled from the other two.  Under an affine 

transformation, the individual basis vectors may be multiplied by different scalars.  Objects are 

scaled in basis units, thus if |e1| ≠ |e2|, the object will rescale as it rotates in the transformed 

space (Todd & Bressan, 1990).   

2.2.3. Principle of Affine Equivalence 

The nature and motion of objects define the space in which they are perceived.   In some 

cases, motions of an object can be considered as affine (or near-affine) transformations of the 

space associated with the object.  It is parsimonious to propose that: within limits, certain affine 

(and near-affine) transformations of Euclidean space are perceptually equivalent.  These spaces 

 

Figure 2.11. Shear strain deformation. 



  

41 

can be mapped into perceptual equivalence through Lie transformations only of the fronto-par-

allel image plane (changes in the flat image, e.g., rotation about the line of sight, radial 

expansion, translation; see Dodwell, 1983).   

 However, it cannot be said that spaces that are affine transformations of each other are 

geometrically equivalent.  They are not.  The significance of this concept is that the perceptual 

system does not map one affine transformation into another; the affine transformations of the 3-

space manifold are perceptually equivalent.  In other words, many 3-dimensional spaces are 

equivalent for the perceptual system, much as the modality from which one gathers 

information, such as reading or listening, is separate from the information.  The principle of the 

perceptual equivalence of affine transformations of Euclidean space arises from the apparent 

fact that affine spaces are perceptually equivalent.  Since, by our definiton, affine spaces are 

affine transformations of Euclidean space, then all affine spaces are perceptually equivalent to 

the Euclidean space in which we live.  Our experience in Euclidean space makes it the common 

referent among affine transformations of space.   

The principle that affine transformations of a space are perceptually equivalent may not be 

"intuitively obvious to the casual observer."  Sitting in the front row, side aisle, at a motion 

picture produces a highly distorted image of the scene on the retina and yet the perception is 

not one of a distorted scene.  Experiments by Cutting (1987, 1991) and by Busey, Brady, and 

Cutting's, (1990) clearly demonstrate the perceptual equivalence of objects in affinely trans-

formed space.  Cutting explored the ability of an observer to veridically perceive scenes at a 

movie when the observer is located at a position not analogous to the camera position.  Of par-

ticular interest is the ability to perceive rigidity under motion.  Through computers, he mathe-

matically projected objects upon a screen at different slants and under differing projections.  

Use of the computer "projection" method removed any perception of the slant of an actual 

screen.  He generated images under orthographic and polar projections at angles of 0°, 22½°, 
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and 45° from normal.  The apparent screen angle changed sinusoidally by ±5°.  Subjects were 

normal to the computer display screen.  An orthographic projection onto a slanted screen pro-

duces an affine transformation.  The affine transformation at 22½° produces an 8% width 

decrease [(100 x (1-Sin(90-θ)))]; at 45° the decrease is 29%.  A polar projection simulates 

perspective in one axis.  A polar projection onto a slanted screen produces a non-affine trans-

formation; the top and bottom lose parallelism, and the horizontal scale is not constant.  The 

transformations above did not change during each trial.  Subjects viewed images of rotating 

rigid and non-rigid rectangular solids and attempted to discriminate rigid from non-rigid solids.  

At 0° and 22½°, objects in both projections were perceived as rigid.  A cube rotating in space is 

still perceived as a cube.  When the screen angle increased to 45°, the polar projection was no 

longer perceived as rigid, whereas the orthographic projection was.  The polar projection non-

affine distortion will be slight at 22½°, but significant at 45°.  The affine (and nearly affine) 

transformations at 0° and 22½°, and at 45° for the orthographic projection, produce equivalent 

perceptions.  The non-affine transformation produced by the polar projection at 45° did not.  

Norman and Todd (1993) did find that subjects were sensitive to changes in affine stretching in 

the fronto-parallel plane, but not in depth.  Subjects perceived non-rigidity under such changes.  

The changes were rapid and occurred on a frame-to-frame basis, and are significantly different 

from the slow changes an observer would experience in normal motion.  The rapid picture 

plane changes undoubtedly interfered with the ordinal and cardinal scaling processes, described 

below.  Thus, the affine equivalency hypothesis is not refuted.   

Affine space is scaled in perception.  We have an extremely wide range of scale adjust-

ment that spans orders of magnitude.  It is remarkable that models of real objects, such as 

trains, planes, automobiles, molecules, and houses, can be so compelling, given the orders of 

magnitude of scale error.  This (re-)scaling is so ordinary as to be commonly overlooked.  Yet 

this is also what happens when perceiving a distant object: the affine space is scaled.  Gross 
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scale adjustment appears to be a facility of the perceptual system.  This is consistent with the 

perceptual equivalence of affinely transformed spaces.  A geometrical description of an image 

on a screen does not address the most significant aspects of the visual perception of spatial 

structure.   

Coupling with non-unitary axis vectors satisfies the apparent problem raised by the 

veridical perception of space projected onto a movie screen if one considers such an affine (or 

near affine) transform of orthonormal space as a member of the perceptually equivalent geome-

tries.  Considerable evidence has been developed in recent years that the visual perception of 

space involves the perception of affine spaces rather than Euclidean space.   

Perceptual equivalence means that affine transformations of a space do not affect the 

perceived affine structure.  This apparent tautology can be resolved by restating: perception of 

structure is not perception of Euclidean structure.  An affine structure has no dimensions asso-

ciated with it.  This is difficult to envision, as we perceive real things with real sizes.  We do 

not separate an object from the space it occupies (e.g., Killing, 1892).  Therefore, it is useful to 

discuss affine transformations of the space occupied by the object.  If we define that object in 

terms of its space, and the space undergoes transformations, so does the object.   

As discussed above, perception is the product of two spaces: a vector space and a metric 

space.  The vector space is one of relative distances within a direction.  One can think of this as 

a "rubber space" with well-defined rules for its deformation.  A simple experiment will demon-

strate an affine perception.  Hold a nearly featureless book at arm's length on the palm of your 

hand.  The more nearly featureless the book cover (e.g., an old mathematics book), the better 

the effect.  Hold the book with one end directly toward you so that you cannot see either side.  

Close one eye.  Now tilt the book around an axis normal to your line of sight by flexing your 

wrist.  Note that it is difficult to judge the length of the book.  You can still perceive that the 
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book is a parallelepiped, but its length is difficult to judge correctly.  The book's affine structure 

is perceived, but not its true metric structure.   

Underlying this concept of the perception of affine structures is the separateness of the 

perception of an object and of its place.  This is the difference between the "What" of an object 

and the "Where" of an object (Sagi & Julesz, 1985).   

When we perceive a book, we perceive what it is—its shape, size, and color—irrespective 

of where it is located with respect to our selves.  In a recent review of mechanisms of visual 

perception, Van Essen, Anderson, and Felleman (1992) have enumerated the subdivision of 

processes in the early (retinae and LGN) and mid (visual and medial temporal cortices) visual 

system.  They have presented a model of modular processing that is summarized in Fig. 2.12.  

This is a summary of the modular processing in some 32 visual areas.  P represents the 

parvocellular neurons in the lateral geniculate nucleus (LGN) and their receptive fields in the 

retina; M represents the magnocellular system.  The parvocellular and magnocellular systems 

are apertures with specific characteristics.  Sary, Vogels, and Orban (1993) have also 

demonstrated the separateness of What and Where by recording responses in the primate 

inferotemporal cortex to shapes.  Cells reponsive to a specific geometric shape, for instance a 

square, were responsive over a large retinal region, and responded about equally to a black 

square on a white background as to a white square on a black background, or to a square of dots 

moving across a field of stationary dots.  We can conclude that at the level of "Visual Tasks" in 

Fig. 2.12 that the What and Where of an object are separated.   

This separation of What and Where is maintained into working memory in the prefrontal 

cortex.  Recent work by Wilson, O'Scalaidhe, and Goldman-Rakic (1993) demonstrates the 

anatomical separation of the perception of an object and its spatial location.  Monkeys were 

trained to look to the left or right after a 2.5 second delay in response to a particular form 

presented on a display.  The same monkeys were trained to look, after a delay, at the locus of a 
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stimulus presented to the left or right of a fixation point.  The object-based, or form-based, task 

caused increased activity in the inferior convexity of the prefrontal cortex, but not in the dorso-

lateral prefrontal cortex.  The reverse was true for the location task, although both tasks used 

the same forms and required the same responses.   

The place invariance of object perception requires what Van Essen et al. (1992) refer to 

 

Figure 2.12. Modular processing model. 
Adapted from Van Essen et al., 1992. 
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as "scale invariance."  This size constancy of perception means that the object is perceived at 

its own scale and is not usually scaled by some computational process that adjusts perceived 

size according to spatial location.  This is in contrast to Gogel's (1990) phenomenological 

approach to the perception of size and structure, whereby the perception of the observer's 

direction and distance (i.e., location), and motion relative to the object's must be incorporated 

for veridical perception of the object's metric structure.   

Let us return to our book.  If we now hold the book at arm's length at an oblique angle, 

such that we now see a corner formed by three surfaces, we find that changing the tilt of the 

book does not substantially change the perceived length, the metric structure.  This is because 

the axes of the object are rotationally coupled.  This rotational coupling is the equivalent of the 

element recursion, which is equivalent to moving the element through space to provide scaling, 

as described above.  The rotational coupling is due to the coordinate system inherent in the 

object.  This object "self metrifies."  Ames windows and rooms violate self-scaling by 

providing a false orthogonal coordinate system.  An Ames room, depicted below (Fig. 2.13, 

from Kaufman, 1974) is encountered as a "crazy room" in amusement parks.  It is a non-

orthogonal room (i.e., walls and ceiling are at non-right angles) that appears orthogonal from 

one specific vantage point.  The relative sizes of people in the room are misperceived.  The 

misperception of these Ames constructs will not survive affine transformations, however, as the 

apparent parallels will not maintain parallelism.  An Ames figure cannot withstand an affine 

transformation of its space.  The inherent rotational coupling of the book, however, is 

consistent with the true coupling under affine transformations, such as rotation.  Rotational 

coupling serves to delineate the true orthogonality of axes—even if affinely transformed. 

Movement of an object in space implies congruence between the spaces it occupies 

(Killing, 1892).  By extension, movement—including rotation—of an object in space serves to 

provide relative scales between areas of space or between axes in the same locale of space 
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(Lappin & Wason, 1991).  Perceptually, the three-dimensional space will be defined by the way 

objects move in the space—either by direct movement or by implied rotations due to the sym-

metries or regularities of the objects.  If a point on an object rotating at a constant angular 

velocity about the intersection of a transformed space (Fig. 2.14) traversed each of the four 

quadrants (I, II, III, IV) in the same amount of time, one could presume that for a human 

observer the perception would be of a normal space.  This is an example of equivalence of 

affinely transformed spaces.  Therefore, these three-dimensional spaces are perceptually the 

same.  Only by placing one in the context of another would the differences be evident.   

This perceptual affine equivalence has significant implications for what is involved in 

the perception of space and how it is accomplished—and represented—in the central nervous 

system (CNS).  With the equivalency of affine and near-affine transformations, size constancy 

is one consequence, as local perspective distortions can be considered as local affine transfor-

mations.  Extended perspective space projected into a display can be considered a non-affine 

space.  Locally,  however, one can approximate perspective as an affine transformation of 

Euclidean space.  The off (visual) axis space will include shear strain components.  The analy-

sis of perspective space is covered more fully under "Monocular Factors in Spatial Perception: 

3.4. Perspective."  
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Figure 2.13. Ames room. 
From Kaufman, 1974, p. 345. 
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2.2.4. Perception of Space 

Computer-generated displays permit the development of experimental viewing 

conditions that can be manipulated to create stimuli which would not be experienced in the 

normal environment.  In the Western tradition, much of this work is reductionist, but there are 

those who bear in mind that the elucidation of properties of the visual system under minimal 

conditions may not be a good predictor of the performance of the system in the perceptually 

rich Gibsonian real world.  A discussion of the perception of space must first address the nature 

of the experimental presentation (e.g., Gibson, 1950).  The display uses motion parallax to 

create the perception of affine structure.   

 

Figure 2.14. Rotation in non-orthogonal space. 
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2.3. PERCEPTION OF AFFINE STRUCTURE FROM MOTION 

Structure-from-motion (SFM) will be used to create an unscaled vectorfield, V, in the 

observer's visual system.  Kaiser and Proffitt (1992) have demonstrated that such displays are 

feasible, as has the investigator under previous, unpublished work funded by various federal 

agencies.  An effective display must consider both spatial structure and motion.   

2.3.1. Perception of Motion 

Most current studies of the perception of motion use apparent motion that is produced by 

the sequential presentation of a series of dots (light or dark).  Hue, brightness, and form are 

generally preserved under apparent motion (Navon, 1983).  Thus most research is performed 

with sequences of spaced presentations, rather than a continuously moving stimulus.  As long 

as the spacing and timing falls within broad limits, this produces no problems. 

Given that apparent motion is equivalent to real motion, one can address the question of 

the relative motions of separated points.  A unified structure moving in space will have all 

points moving in a coherent, synchronous manner.  If one is to detect structure-from-motion, it 

is evident that the coherence of such motion must be detectable.  It is (Lappin & Bell, 1976; 

Bell & Lappin, 1973).  The visual system is responsive to the coherence of motion of separated 

points.  Lie transformations are changes in a planar image.  These include radial expansions, 

rotations, and translations of the image.  Lappin et al., (1987) displayed a triangle of three 

moving dots on a CRT.  The dots either jumped under a Lie transform (e.g., radial expansion, 

translation, rotation) or jumped independently in random directions.  With jumps occurring 

every 20 ms, the coherence or lack of coherence was clearly evident.  Others have reported 

similar results (e.g., Mingolla, Todd, & Norman, 1992; Mowafy et al., 1990).  The perception 

of motion is complex and can involve several processes operating in parallel.  All such proc-

esses appear sensitive to the coherence of the motion of separated points, as would be required 

for the perception of a unified structure (Dick et al., 1987; Hogben & Di Lollo, 1985; 
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Livingston & Hubel, 1988; Stoner & Albright, 1993).  Such motion information can produce 

the perception of spatial structure (Doner, Lappin, & Perfetto,  1984; Eby, 1992; Hoffman & 

Bennett, 1985, 1986; Kaiser & Proffitt, 1992; Lappin, Doner, & Kottas, 1980; Ono & 

Steinbach, 1990; Petersik, 1987; Richards, 1985; Saidpour, Braunstein, & Hoffman, 1992; 

Tittle & Braunstein, 1993; Todd, 1984; Wallach & Centrella, 1990).   

2.3.2. Affine Structure-from-motion 

A brief description of how an affine structure can be defined in a vector space is appropri-

ate at this point.  Few objects and scenes are oriented to the observer's "natural" coordinate 

system of a picture plane normal to the line of sight and depth along the line of sight.  Real 

objects and scenes do not have "depth" separated from "width" and "height."  To discuss the 

depth dimension as separate from the other dimensions is therefore arbitrary.  Generally objects 

and scenes structure themselves in our perception.  How is this so?  Let us return to a basic 

Cartesian coordinate system.  For any point in that space, there are three degrees of freedom.  

For any object, however, there are six: three of position, three of orientation.  If an object is 

self-structuring, then it is necessary to translate relative dimensions (relative scalars) in one 

axis into the others.  For many objects, this is relatively simple, in that they carry a "natural" 

coordinate system.  For instance, most man-made objects have high degrees of symmetry and 

orthogonality.  As a general case, though, we must "carry" the relative metric from one dimen-

sion into the other.  Let us suppose that we do not care about the exact orientation of the 

object's coordinate system relative to our own; all we want to know is the object's structure.  

Therefore, we are no longer interested in mapping the object's image onto our retina; we are 

interested in visually mapping the object's separate axes metrics onto each other!   

First, we can define features' axis positions relative to other features.  This is a sequencing 

operation.  I have discussed how this can be achieved as a vectorfield in space, but let us carry 

that to all directions.  Previously we have considered the vectorfield to be a description of 
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sequence in depth.  For a moment, let us revert to an observer-oriented Euclidean coordinate 

system (E3).  As before, e3 is the line of sight and e1 and e2 define a fronto-parallel plane (a 

picture plane).  Each point on the object has three coordinate values, an e1, an e2, and an e3.  

Consequently there are three vectorfields: e1-e2 with e3-direction vectors (or e3 to denote a 

vector); e2-e3 (e1-vectors, e1); and e1-e3 (e2-vectors, e2).  For simplicity, I shall denote each 

vectorfield by its vectors, e.g., the e1-e2 field of e3 is the "e3-field."  Thus each point on the 

object can be represented with three unscaled vectors: e1 , e2 , e3.  Stereo or motion disparity 

can produce an e3 sequence of features of which feature is next to which.  The e1- and e2-fields 

are easy to establish: you can tell where things are in the e1-e2 plane if you are sighting down 

the e3 axis.  This is not to say that the e2 and e3 scales are equal relative to each other, but that 

one can tell the relative sequence of points along the e2 and e3 ordinates.  (No surprises here.)  

The e2- and e3-mapped locations of points can be considered, again, as sequencing 

vectorfields.  The vectors are not parallel with the lines of sight, but are normal to it.  Thus, we 

can envision a structure as defined by three vectorfields, ultimately of local differentials.  This 

is, of course, an affinely defined structure.  The observer-based vector space was used to 

simplify the explanation of how the structure of an object is defined in a three-vector space 

system.  This vector structure is central to our use of affined space in a display.  Remapping 

this observer-based three-vectorspace description of the object into an object-referenced three-

vector manifold (O3) is straightforward.  The point is, we are considering all dimensions, 

including those in the fronto-parallel plane, to be vectors, not metrics.  Additionally, we are not 

imposing a uniform vector metric over all of space for a given axis, but only for local 

relationships.   
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Figure 2.15. Figure with equal height and width. 

The relative scales of e2 and e3 are not particularly well matched, as might be implied 

from a spatial-to-retinal mapping scheme.  Visual illusions provide hints of the low level of 

metric precision in the retinal array.  For example, the classic inverted "T" (Fig. 2.15) with 

equal base width and height produces the illusion that it is taller than it is wide.   

The partially or completely filled space on the left (Fig. 2.16) appears longer than the open 

one on the right (Luckiesh, 1922, p. 49).   

 

Figure 2.16. Filled spaces appear longer than empty ones. 
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Although the middle sections of the two lines in Fig. 2.17 are of equal length (Luckiesh, 1922, 

p. 54), they are generally not perceived as equal.   
 
 
 

 
   ÃÄÅÄÄÄÄÅÄ´       ÃÄÄÄÄÄÄÄÄÄÅÄÄÄÄÅÄÄÄÄÄÄÄÄÄ´ 

 
 

Figure 2.17. Mid-section of lines are equal. 

Similarly, local effects can override global metrics in the retinal image.  In the Zöllner illusion 

(Fig. 2.18), the opposing local slants cause the global parallelism of the vertical lines to be mis-

perceived as non-parallel (Luckiesh, 1922, p77).   

The cubic figure (Fig. 2.19) from Luckiesh (1965, p.58) is particularly interesting.  The 

figures on the faces contain oblique and right angle lines intersecting a vertical line.  The per-

ceived slant of the surfaces affects the perception of the angles between the lines.  The lines 

that are at right angles on the page are perceived as oblique, and the oblique lines are perceived 

as at right angles to the vertical.  The retinal image is a poor place to do scalar geometry.   
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Figure 2.18. The Zöllner illusion. 

 

Figure 2.19. Cubic figure with lines. 
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As outlined above, much of the affine structure of the object is available in the fronto-

parallel plane.  Motion—or stereoscopic disparity—provides a method for the perception of 

affine structure.  This has been roughly outlined above.  Koenderink and van Doorn (1991) 

provide a lucid conceptual and mathematical demonstration of the ability to recover affine 

structure-from-motion via apparent motion from two views.  This they term the "affine 

structure-from-motion" theorem.  The resulting structure is defined in affine geometry, meaning 

that the coordinates of the object are subject to scaling and the coordinate system is subject to 

shear-straining.  We shall return to the issue of structuring below.   

As discussed above, Cutting (1987, 1991) experimentally supports this conclusion of the 

perception of spatial structure based on the perception of affine structure with investigations of 

affine shear transformations and non-affine (perspective) transformations in motion pictures 

viewed off-axis.  He found that the affine transformations produce no change in the rigidity or 

form of the objects displayed in motion, whereas strong perspective (i.e., non-affine) 

transformations reduce the perception of rigidity.   

It has been widely demonstrated that the structure perceived from motion is not accu-

rately scaled for depth; thus it is the perception of an affine space (e.g., Cutting, 1987; Hildreth, 

Grzywacz, Adelson & Inada, 1990; Koenderink & Van Doorn, 1991; Lappin & Love, 1992; 

Lappin, 1990, in press; Proffitt, Rock, Hecht & Schubert, 1992; Proffitt & Kaiser, 1991).  As an 

example, Todd and Bressan (1990) presented subjects with tasks that required either the per-

ception of affine or Euclidean structure-from-motion.  As an example of perception of 

Euclidean structure-from-motion, subjects viewed two bars joined at one end.  The structure 

rotated rigidly in space.  The two bars differed in length; subjects reported which bar they per-

ceived as longer.  The subjects had to make metric comparisons between two different orienta-

tions.  This is a Euclidean task, and subjects required differences of approximately 30% to dif-

ferentiate the lengths reliably.  On the other hand, subjects viewed several bars in (SFM) space.  
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One bar changed length during rotation while the others had constant lengths; hence the 

changing bar was not a rigid structure.  Subjects reported which bar changed in length.  

Subjects could reliably detect changes of only 3% over 3 frames.  This task required only affine 

perception of space.   

2.3.3. Spatial Structure 

A brief review of the transformations and structure of the space to be displayed are in 

order.  As the vectorfields are largely local differential vectors, special consideration must be 

given to the overall spatial structure of the display.  This may require the addition of spatially 

structuring components or systems to the scene (see Section 3.3.).  These components should 

refer local spatial structures to more global structures through a hierarchy.  To the degree 

possible, affine (rather than non-affine) transformations of space should be used.  Mappings of 

perspective space into the vectorfield can frequently be made through affine approximations 

coupled with Lie transformations of the image.  For instance, a volume of space off the line of 

sight can be approximated as a shear-strained space with the image translated off axis.   

2.3.3.1. Affine Space Rescaling 

An affine space has been defined above (Section 2.2.2.).  Essentially, in transformations 

between affine spaces all parallels are maintained, although angles and distances may change.  

As noted, the normal space we live in, Euclidean space, is an affine space.  Since affine spaces 

are perceptually equivalent, transformations of object space into spatial displays should be lim-

ited to the affine or as nearly-affine as possible.  An affine space has the same scale at all 

distances.  Perception of space from disparity, whether from SFM or stereopsis, is the percep-

tion of affine structures.  This is the same as saying that disparity-based perception is the 

perception of structure in affine spaces.  Disparities, and consequently relative depth vectors, 

have different scales at different distances.  A unit vector of disparity resulting from the depth 
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spacing of two nearby objects represents a greater depth spacing between two distant objects.  

Mapping of perspective space into the vectorfield is inherently a non-affine transformation as 

the affine scale is not constant over distance, but there are near-affine approximations that can 

be used (Section 3.4.).  The principal affine transformation other than affine shear-strain will be 

a uniform (as opposed to perspective) rescaling of the depth (e3) dimension to normalize it to 

the vectorfield.  It is decoupled from rescaling in the e1 and e2 axes, which are parallel to the 

fronto-parallel plane.  Although e1 and e2 may be scaled differently, particularly to approximate 

aspects of perspective, shear-strain can provide much of the perspective transformation.  As 

discussed below, Section 3., Affine Scaling, affine space must be locally scaled.   

2.3.3.2. Affine Shear-Strain 

Moderate shear strain deformations (as described above, Section 2.2.2.1.) can be consid-

ered to be perceptually equivalent.  Large shear strain deformations of space are permissible as 

long as the motions of objects are consistent with the space.  As such, object motions should be 

considered to be first plotted in Euclidean space on a frame-by-frame basis, and those coordi-

nates subsequently transformed into shear-strained space.  Direct calculation of motion in 

shear-strained space is subject to error or misinterpretation, potentially producing the percep-

tion of a distorting scene.   

2.3.4. Motion 

Although the depth vectorfield is based on structure-from-motion (SFM), there should be 

no net translation of observer position relative to the display space.  This can be achieved by 

using a limited range of motion about some nominal fixed position, small enough for no signifi-

cant translation, small enough for apparent motion, and large enough to create a vectorfield 

(Chang & Julesz, 1983).   
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One can presume that an instantaneous lateral shift in the observer's position relative to 

the display space will provide a certain level of coherent, simultaneous retinal image drive, 

produced by motion, for the creation of a disparity parallax vectorfield.  This instantaneous 

vectorfield provides a level of drive, dd, for the perception of depth.  Let us consider that a 

certain minimal level of disparity drive, ddm,  is required to create a perception of depth.  The 

vectorfield is a differential field ; the larger the change and/or the faster the change, the larger 

the disparity drive.  An energy decay model is appropriate for the decay of the disparity drive 

following an abrupt change.  Let us assume that the disparity drive level, dd, decays exponen-

tially with time: 

d d ed d

t
=

−

0
τ  , (Eq. 2.13) 

for which dd0 is the initial drive level at the instant, t = 0, that the vectorfield is generated, and τ 

is the decay time constant for the drive.  t is the time since the generation of the vectorfield.  As 

long as the disparity drive level is above some threshold, ddm, the perception of depth is main-

tained.  The values of ddm and τ are probably not constant, but can vary within limits for the 

observer and the conditions.  Thus, as the observer becomes attuned to the display, the size of 

the shifts in observer position may be decreased, or the time interval between shifts may be 

increased, reducing computational load and observer awareness of the process.  This would 

reflect either a change in threshold, ddm, or a change in the decay time constant, τ.  Changes in 

### are more likely.  The size of the disparities, and the amount in connected space, together 

provide a disparity enery level which dissipates exponentially (Fig. 2.20).  Thus images with 

more contiguous spatial complexity will produce a higher level of disparity drive energy, which 

will take longer to decay down to the disparity drive threshold for spatial parallax.  One would 

expect a richer, fuller vectorfield to produce a stronger drive than a depleted one (i.e., if there is 

more stuff in the visual field, the perception of depth will last longer).   
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Figure 2.20. Disparity drive decay. 

The vectorfield is scaled independently from its actual amplitude, as it is scaled relative 

to itself (self-normalized); consequently, one would expect the perception of spatial depth to be 

maintained continuously until it abruptly ceases.  This is a direct result of the perceptual 

equivalence of affine depth rescaling.   

The exponential decay of the instantaneous vectorfield may be the explanation for the 

findings of Todd and Bressan (1990), Braunstein, Hoffman, Shapiro, Andersen, and Bennett, 

(1987), and Braunstein, Hoffman, and Pollick, (1990) that there is little improvement in the 

perception of spatial structure from using more than two frames in apparent motion.  Each new 

vectorfield "overwrites" the previous one, as the physical location in the CNS is the same 

(Hogben & Di Lollo, 1985).  Since scientists consistently use motion that is either linear or 

circular (i.e., the instantaneous vectorfields are nearly the same), there may be some small 

residual effect from the summation of decaying successive vectorfields that results in the small 

(3%) but consistent improvement in depth when more than two frames are used.   
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Motion which has a consistent pattern will eventually produce predictive eye 

movements.  As the motions are small, the predictive movements can be expected to overshoot 

the actual changes, resulting in an increased perception of the movement.  A random motion (in 

direction and time) to the movements should minimize this effect.  Now let us turn to the 

proposed implementation of these concepts.   

2.4. IMPLEMENTATION OF AN AFFINE SPACE DISPLAY 

Implementation of the structure-from-motion (SFM) display has several facets.  These 

include subapertures, pseudosaccades, and gross offset affine shear-strains.   

Since the SFM vectorfield is unscaled for depth, display contents should always span the 

maximum possible vector range to make full use of the affine space, which will be created by a 

small affine shift.  Use of less than the full affine depth reduces the potential spatial resolution.  

This reduces the effectiveness of the display.  The vectorfield will be scaled independently.  

This may be counterintuitive.  The contents of a display should be normalized to the maximum 

extents of the affine space.  The affining level should be set to suit the worst case depth span 

expected (greatest zs).  Methods developed for scaling the SFM vectorfields can also be applied 

to stereoscopic displays.   

2.4.1. Multiple Subapertures with Micro-Shear-Strains 

In Section 2.1.4.1., "Optical Aperture," a subaperture model of the binocular visual 

system was presented (Figs. 2.4, 2.5).  Each eye was shown to constitute a subaperture of a 

potential circular aperture.  We can expand the selection of subapertures from two to as many 

as we wish within a defined aperture, and select them in some defined sequence.  The orienta-

tion of space with respect to these subapertures can be shown.  We shall first describe the space 

relative to the two binocular subapertures—the eyes—as shown in Fig. 2.21.  This depicts the 

e1-e3 plane.   
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Figure 2.21. Centerline-based geometry. 

A1 and A2 represent the two subapertures of the two eyes depicted above in Figs. 2.4 and 

2.5.  C is the center of the aperture.  A1 and A2 lie at either side of the center.  e3 projects out in 

front of the observer.  N is the nodal point, the point at which the axes of the two subapertures 

(i.e., eyes) converge.  The e3 axis passes through C and the nodal point.  A nodal plane is 

shown passing through the nodal point perpendicular to e3.   

 

Figure 2.22. Rotation for aperture positions. 

One can consider each subaperture to act as the centerpoint (C) when it is individually 

accessed.  In other words, if C is the Cyclopean eye (Julesz, 1971), A1 and A2 can be consid-

ered two views from the common point.  Thus we can consider a stationary viewpoint with a 
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space which rotates about the nodal point, N , as the equivalent from an aperture standpoint 

(Fig. 2.22).  When the space is viewed from subaperture A1, it is equivalent to rotating e3 about 

the nodal point, N, to orientation e3,1.  Similarly, space viewed from A2 is equivalent to viewing 

from C and rotating space such that e3 has the orientation e3,2.  Note that the normals through 

N  rotate accordingly.  The local differentials between the two images constitute the local 

disparities, be they binocular or apparent motion.   

Instead of rotating e1-e3 space about N , the orientation of the nodal plane relative to C 

(the line C - N ) can be held constant by subjecting the space to a small shear strain of e3 rela-

tive to e1, as shown in Fig. 2.23.  The nodal plane N p now has a constant orientation relative to 

the observer.  As the shear strain is an affine transformation, there will be no perceived distor-

tion of space for modest transformations.  The actual aperture shift will be small, and thus the 

shear-strain will be small.  Larger shear-strains can be introduced for other purposes (see 

Section 2.4.3. below).  The shear-strain transformation is more evident in Fig. 2.24, in which 

parallels to e3,1 and e3,2 have been included.   

The local differential between the views of space from the two aperture positions, 

whether Euclidean or affinely transformed, generates the vectorfield, V .  The disparity vector 

between the two aperture views is a linear function of the distance in the e3 direction from the 

nodal point, N  (Euclidean), or nodal plane, N p (affine).  The vector sign is a function of 

whether the point is in front of or behind the nodal plane.  It is readily apparent that the magni-

tude of shift of a point resulting from an aperture shift will be linearly related to that point's 

distance from the nodal plane.  This shift between aperture positions provides the differentials 

that form the depth vectorfield.   
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At this point we are in danger of being overwhelmed by nomenclature.  To simplify 

matters, standard terms will be adopted.  As the depth of the vectorfield is unscaled, shear-

strain angles (###) have no meaning.  Therefore, the plane of subaperture points will also serve 

to define the shear strains, although not in angles as with the normal convention.  The null (0,0) 

aperture micro shear strain is thus the centerpoint, C, which is coincident with the center 

(defined as e1 & e2 = 0) of the nodal plane, the nodal point (N ), when e3 is normal to the nodal 

plane.  The aperture position will be defined as a displacement relative to the center (C ) as a 

 

Figure 2.23. Shear strain for aperture positions. 

 

Figure 2.24. Parallel shifts of lines in depth. 
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fraction of the width (W ) of the screen at the front surface of the screen, which is the front of 

the vectorfield.  By this definition, the (sub)aperture position, Ap, and the shear strain are syn-

onymous, even though they could be considered 180° out of phase.  (### = eccentricity of 

aperture positions relative to C .) 

Thus far we have considered subaperture positions that lie at either edge along a horizon-

tal diameter of a round (super) aperture as in Fig. 2.4.  This is analogous to a binocular 

arrangement.  Actually, subapertures can be located anywhere within the superaperture 

(henceforth, the term "aperture" refers to a subaperture, Ap ).  One possible arrangement is in a 

line along the diameter.  If these apertures are presented in sequence, with no accompanying 

shear strain, we have the equivalent of the kinetic depth effect (KDE) described by Wallach and 

O'Connell (1953).  The linear sequence with the accompanying shear strain is the same as the 

alternating linear stereokinetic effect (SKE) described by Proffitt et al. (1992).  Defining the 

superaperture as a line extending continuously by rotating around the nodal point in a circle or 

part of a circle describes a more extreme kinetic depth effect.  Translation along a line, a con-

tinuously moving aperture, with subsequent equal translation of the nodal point, produces 

normal motion parallax, which is a KDE with a radius of infinity.   

Apertures could be located around the rim of the superaperture, forming a circle (Fig. 

2.25).  If presented in a continuous circular sequence, e.g., A1, A2, A3, . . . with corresponding 

shear strains, the stereokinetic effect (SKE) will be produced (Musatti, 1924).  Thus, it is 

apparent that selecting the appropriate aperture positions, with or without relevant affine shear 

strains, can describe the conventional SFM effects.  This same system can be used to define an 

SFM display.   
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Figure 2.25. Circle of apertures. 

2.4.2. The Pseudosaccade 

An observer can become fatigued by watching a continually oscillating or rotating SFM 

display.  Presumably this is due to the generation of predictive eye movements (Bittencourt, 

Smith, Lloyd, & Richens, 1982; Kelly, 1990).  It has been assumed here that the disparity drive 

(dd) is a function of the size of the differential and decays exponentially with time (Eq. 2.13). 

The circular SKE has disparity shifts of equal amplitude spaced at equal times, but this need 

not be the case.  It is possible to make an unpredictable display shift pattern.   

As discussed above, saccades can provide the retinal events that facilitate maintenance of 

the coherence within and between the retino-cortical apertures.  Also, saccades do not normally 

occur at regular intervals, but are quasi-random (Mates, 1978).  A good model for such random-

ness is a Poisson distribution.  Saccades also do not normally occur with a regular spatial 

pattern.  By selecting aperture positions quasi-randomly from a circular pattern, shifts of 

different perceptually random lengths and directions will occur.  The differing lengths will 

produce differing drive levels, which will allow differing times before decaying down to the 
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drive threshold (ddm), so differing times between shifts can be used.  These related but variable 

aperture shift lengths, directions, and times can be used to produce a pseudo-random sequence 

of "pseudosaccades."  A true saccade results in a change in the position of the image on the 

retina, but no change in the structure within the image itself (a Lie transformation with uniform, 

continuous differentials between images).  The motion is synchronous across the entire retina.  

Motion  parallax results in a structural change within the image.  The pseudosaccade is a 

combination of the two, using the abrupt, synchronous transretinal change to provide coherence 

to the structural image changes that provide disparities.  It accesses the depth-from-disparity 

transformation capabilities of the CNS through a non-disparity mechanism (i.e., saccadic abrupt 

synchronous image changes). 

2.4.3. Gross Offset Affine Shear Strains 

The SFM aperture shifts will be accompanied by affine shear strain shifts such that the 

nodal plane will remain parallel to the aperture plane, which is the surface of the display.  

Large stationary shifts can also be imposed as needed to provide static coupling through the 

structure of the display (such as the vertical and horizontal offsets of the Nekker cube, Fig. 

2.10).  These shear strains can be measured with the same system used to specify the aperture 

shifts, based on C.  Such affine shifts could be up to 20% of the screen width (W), and can 

provide a method for producing effective modest rotations of the display space.  As these 

would be shifts of the vectorfield, the actual perceived angle would be a function of depth 

scaling.   
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3. SCALING OF AFFINE SPATIAL STRUTURES 

3.1. SCALING THE VECTORFIELD 

The process of visual perception of spatial structure requires the scalar field-vectorfield 

product (S x V).  Monocular factors develop the scalar field, S, which scales the vectorfield, V.  

In the absence of a scalar field, there are "system defaults," e.g., the specific distance tendency 

and the equidistance tendency (Gogel, 1965, 1977), which serve as the scalar field, S.  For 

instance, the equidistance tendency provides a local scale that is based on the proximities of the 

image components without adequate depth information necessary to spatially separate image 

components.    Similarly, in the absence of an adequate vectorfield, a strong scalar field can 

produce the perception of depth, due to the S x V product. The visual system attempts to re-

move ambiguity (e.g., one cannot perceive both states of a Nekker cube simultaneously).  This 

display depends on the interaction of the two components (S, V) in the generation of a percep-

tual 3-manifold.  The scalar field, S, does not need to contain a scaling value for each point in 

the vectorfield, V.  If the spatial structure adequately integrates the space (as discussed below, 

Section 3.3.), then a relatively small number of points needs to be scaled, since the remainder 

of the vector points will be scaled ratiometrically.   

As discussed above (e.g., Nawrot & Blake, 1989, 1991), the SFM and binocular stere-

opsis processes converge.  Both produce vectorfields, and both have a limited range of dispari-

ties over which they can produce vectorfields.  The disparities range from a minimum threshold 

(dmin) to a maximum (dmax) before loss of correspondence between image features in motion 

(Wehrhahn & Rapf, 1992; Chang & Julesz, 1983a, b) or stereopsis (Julesz, 1971).  The tech-

niques of monocular scaling presented below can be used in either type of display.  For clarity 

in this paper, specific reference is made only to SFM vectorfields.   

Accommodation and convergence are not significant cues in a visually rich environment, 

and they are not of concern in well-designed displays.  Image focus may be of concern, 
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however, as it is determined by the display.  Spatial frequency manipulations in the display can 

direct the attention of the observer to a particular depth.   

3.2. SCALING HIERARCHY 

How is an affine structure scaled?  How are the axes of the object scaled relative to each 

other?  How are they scaled absolutely?  To address these issues we can create a scalar 

hierarchy: 

1. Sequencing 

2. Ordination 

3. Cardination 

4. Metrification 

5. Absolute Scaling.   

Each level is more specific and requires the previous level(s) in order to operate.  The roles of 

generating factors in the scaling hierarchy can be arranged as in Table 3.1. 

We can organize a discussion of this matrix according to scaling levels or scaling factors.  

I shall briefly explain each scaling level and how it is generated by the relevant scaling factors.  

Some factors provide more than one level of scaling.   

3.2.1. Sequencing 

Sequencing is simply a matter of establishing order without sign: which points are next to 

which.  The relative and absolute spacings are not necessarily well specified.  The vectors from 

structure-from-motion (SFM) and from the static fronto-parallel plane projections provide more 

than order; local relative spacing information is available in terms of the local relative vector 

lengths.  Unless provided in the structure, global relative spacings are not available.  Recall that 

affine structures are unscaled in all three dimensions.  Sequence does not inherently define 

order, e.g., which point is nearer the observer.  Obviously the axes projecting onto the picture 
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plane have a left-right specified.  An ordinal sign change applied to the vectors reverses the 

perception.3  In structure-from-motion analyses (e.g., Bennett et al., 1989), this reversal 

problem arises frequently.   

3.2.2. Ordination 

The ordinal nature of the sequence is an ordered ranking (e.g., from low to high, front to 

back, left to right, first, second, third . . . ) supplied from several sources, less intensity or con-

trast with depth, texture gradients, element size (which is a larger scale texture gradient that I 

shall return to), interposition, and linear perspective.  These give weak dimensional scaling but 

serve well to remove ambiguity about depth sequence.  An ordinal ranking does not specify a 

scale or relative distance, merely order.   

The ordinal scaling can be local.  A mask viewed from the inside at a modest distance, 

gently rotated, will often appear to be a face in relief, instead of the true itaglia (carved into the 

surface, the opposite of bas relief)  (Klopfer, 1991).  The mask is viewed stereoscopically in a 

normal environment.  The rest of the environment does not reverse in depth at the same time.  

In fact, as discussed below (Section 3.3.), one of the tasks in 3-dimensional display design is 

the integration of all local structures into a gross structure.  This is done through a hierarchical 

structure.   

 

                                                      
3The separateness of sequence from order may be reflected in the ease of perception of mirror images and symmetry.  

This also argues for the sequence aspect of vectors in the fronto-parallel plane in the CNS, as they can be separately 
reverse-ordered as fields.   
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3.2.3. Cardination 

Cardinal scaling establishes the relative distance between points, not simply sequence and 

order.  Cardinal metrics are relative scales within an axis or orientation, not between.  One can 

consider it a "rubber ruler."  One can stretch it to span the space required, and the relative 

lengths of the intervals between points will maintain a constant ratio.  The vectors of the 

vectorfield provide local cardination without ordination, or sign.  Element size also provides 

cardination; often cardination and structure metrification are served by the same factors.  We 

could take a single element and move it over the object as a little ruler, providing a metric for 

Table 3.1. Scaling hierarchy. 
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the structure.  Killing (1892) used congruence to describe both cardination and metrification, 

in which space and objects are intimately related: 

Every object covers a space at every time.  The space covered by one object 

cannot simultaneously be covered by another object.  

Every object can be moved.  If an object covers the space of a second object at any 

time, then the first object can cover the space covered by the second object at 

any (other) time.  

Every space (object) can be partitioned.  Each part of a space (object) is again a 

space.  If A is part of B and B is part of C, then A is part of C, where A, B, 

and C may be either spaces or objects. 

This model of movement of an element does not often fit the real world, however.  As 

discussed in Lappin and Wason (1991), illustrated in Figure  3.1 below, the multiple presence 

of the same or similar elements within the scene can provide translational symmetry through 

recursion of the same or nearly the same elements.  In the real world these may be bricks in a 

facade, shingles on a roof, siding on a house, leaves on a tree, etc., which serve as natural 

metrics.  In technological displays (e.g., mechanical engineering stress-strain displays), the 

finite elements can serve to provide the cardinal metrics.  The elements described above can be 

perceived clearly.  The elements that make up texture are difficult to perceive individually, 

serving primarily in the spatial frequency domain.   

In the real world the boundary between cardination within an axis and metrification, rela-

tive scaling among axes, is not sharp.  Analogous to moving a single element over the object, or 

tessellating the object with uniform tiles, one can move the rigid object.  Rotation is angularly 

the same throughout a rigid structure.  Translation is the same throughout a rigid structure.  As 
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discussed previously, the coherence of the motion is critical.  Motion, then, can serve as a 

recursive element, providing a basis for metrics of the structure.   

 

Figure 3.1. Recursion figure from Lappin and Wason (1991). 
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3.2.4. Metrification 

Metrification is scaling among orientations.  This is a critical operation in the spatial 

perception of metric structures.  Essentially, a metric from one axis or orientation must be 

"carried" into another.  A well-defined affine structure with metrically or statistically uniform 

elements distributed throughout the structure can provide structural metrification.  Surfaces can 

constitute good structures for translating metrics between orientations.  Many structures 

inherently provide relative scaling between axes.  An extreme example is the "rat cage" in  

Fig. 3.2.   

 

Figure 3.2. Self-scaling "Rat Cage." 

In order to provide metrification through elements, the elements must be structurally or 

proximally related.  Element recursions can have exact locations (e.g., bricks and tiles) or 

statistical characteristics.  For example the statistics of the distributions of sizing and spacing of 

trees in a forest are relatively constant.  Tree leaves are effective elements.  They are of rela-

tively uniform size, structurally related, and have many different orientations.  For example, 

stand near a tree or a shrub.  Place yourself a distance away from the nearest leaf roughly equal 
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to the span of the tree's canopy width.  Look at the leaves that are near, mid-range, and distant.  

The immediate automatic perception is that the leaves are all the same size.  It is only by con-

scious effort that one can see that the linear extents in the visual field of the leaves on the far 

side are one half of those at the near side.  The visual field areas of the far side leaves are one 

quarter those of the near.  These repeated, semi-randomly recursive visual elements in a con-

tinuous structure provide the metrics to scale the affine structure; they are not sized by it.  

Molecular models depicted as links or sticks and balls have rather uniform elements that are 

often randomly distributed in space and orientation.    

As discussed above, motion can serve to carry metrics among axes.  This is particularly 

true of rotations.  Rotations and translations have been discussed extensively in Lappin and 

Wason (1991).   

3.2.5. Absolute Scaling 

Absolute scaling is made through reference, typically familiarity.  An affine structure does 

not scale among axes.  A metric structure does scale among axes but does not have an inherent 

absolute scale.  Familiarity of objects or scenes provides scales either directly, i.e., the object in 

question is familiar, or through reference by proximity to and/or structural relationship with 

familiar objects.  The scale associated with an object does not change as we change our 

position relative to it, as the structure and scaling are object-based.   

An analogy to the independence of absolute scaling from structure is holography.  A holo-

gram can be recorded with light of one wavelength and reconstructed with light of a different 

wavelength.  The reconstruction holograph will have a different size than the original; the 

reconstruction size is a function of the recording and reconstruction wavelengths.  The structure 

will be unchanged, however.   
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3.3. STRUCTURE 

3.3.1. Global Structure 

We cannot perceive space directly, only through the objects that occupy it.  Global 

structure is the relationship between local structures in a global space.  This is the most impor-

tant aspect of spatial structuring.  Recall that the specifics of retinal coordinates are not main-

tained in the visual system transformations of the retinal images.  As the vectorfields are essen-

tially local differentials, the display structure must be maintained with a global structure if the 

spatial relationships among widely separated scene elements are to be perceived correctly 

(Toet, 1987; Burbeck, 1992; Lasaga & Hecht, 1991; Wertheimer, 1938).  This can be 

accomplished with a hierarchy of structures from local to intermediate to global.  Aspects of 

global spatial perception can be considered an extension of the same mechanisms that provide 

local structure.  In a display, an affine structure needs to be established.  This structure is 

generated by the coherence of motion in separated spatial regions and through the connection 

and/or proximity of components.  Many scenes inherently contain the necessary structure.   

Toet (1987) has described a hierarchical perception of spatial order, from local to global.  

This concept can be incorporated into a hierarchy of spatial reference in the design of displays.  

First, the features within an object must have a perceived spatial relationship.  This has been 

discussed above.  Separated local structures do not inherently have a well-perceived relation-

ship to each other.  This relationship is established through a hierarchy of structures.  First, 

there are local relationships.  These local relationships in turn relate to a higher level of struc-

ture.  The entire structural "tree" relationship can be considered a hierarchy of structures.  A 

spatial structure that supports the relationship of local structures to a global structure should be 

only as complex as necessary.  The objective of a well-designed 3-D display is the reduction of 

complexity while creating a metrically defined spatial structure.  If the scene displayed does not 

contain the related levels necessary, the spatial perception will be inaccurate.   
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Figure 3.3. Cube of recursing elements. 

Structure-from-motion, or stereo disparity, serves to create the affine structures at all 

levels of the hierarchy.   The structures should be designed to create clear disparities regardless 

of the direction of the disparity (horizontal, vertical, or oblique).  Long line segments can 

provide disparities only normal to their extension, and thus are less effective than a line defined 

by short segments.  The ends of the lines, or line "terminators," are features that have good 

spatial location in all directions.  A consistent element size can provide cardination and 

metrification on local, intermediate, and global scales.  As an example, the cube depicted in 

Fig. 3.3 has equal element sizes for all three axes (x, y, & z).  It is a simple, unified structure 

with little visual clutter.  The edges of the cube are formed from dashed lines, providing 

uniform elements throughout.  Although the cube is affinely shear-strained in an orthographic 

projection, the result is a robust perception of a cube in depth, which is ambiguous in depth, 

periodically reversing.   

An example of a hierarchy of spatial structures will be useful.  At the lowest level, an iso-

lated object, such as the small cube, needs to have an observable relationship with a local 

spatial feature.  This feature has a spatial relationship with the next level upward on the scale of 
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a structural spatial hierarchy.  A small dot is a minimal local feature.  It has a spatial relation-

ship with other dots arranged in a line spanning the depth of the display (Fig. 3.4).   These dots 

in space have been called "towers," since on a dark display they are similar in appearance to 

radio towers seen from a low-level aircraft at night.   

The dot towers produce little spatial clutter.  The tower can be located in space relative to 

a larger structure; for example, the dashed cube described above serves as a useful spatial struc-

ture (Fig. 3.6).  It spatially defines a significant volume.   

The cube can be the top level of a structural hierarchy, spanning the entire volume of 

interest.  Cubes can be assembled into larger structures (e.g., Fig. 3.5), thus providing greater 

spatial resolution of the enclosed volume.   

 

Figure 3.4. 
Dot tower. 
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Figure 3.5. Three-level structural hierarchy. 

 

Figure 3.6. Two-level 
structural hierarchy. 
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A rule in the development of a display spatial structure is "less is better."  The structure of 

space must be well-defined, however.  As discussed above, objects will often embody enough 

structure with adequate metric elements to obviate the need for other structures.  An analysis of 

the structure desired, as outlined above, will provide a basis for the design of displays.  Ellis, 

Smith, Grunwald, and McGreevy (1991) reported a study of the perception of the location of 

aircraft symbols in a computer-simulated airspace.  Aircraft were placed over a coarsely 

gridded ground field.  One or two vertical risers projected from the field to each aircraft.  

Perception varied considerably as the line of sight relative to the ground varied.  Addition of a 

second riser reduced, but did not remove, the variability in perceiving the angle and altitude of 

the symbols.  Yeh and Silverstein (1991) reported similar errors in monocular and binocular 

displays of geometric figures over a similar field.  As the angle of the observer's line of sight 

became more parallel with the ground, the errors in perception of location and altitude of the 

figures increased.  Both studies yielded poor results in the subjects' perception of 3-D spatial 

relationships.  In both studies the volumes depicted were poorly defined from a structural 

standpoint.  The entire volumes were not structured, but only the ground.  Symbols were refer-

enced to a structure that was not hierarchically continuous, there being only two levels of 

structure, local and a partial global.  An objective of this dissertation is the production of well-

defined space within which objects can be accurately localized and scaled.   

3.3.2. Symmetries 

Certain structures perform rotational coupling due to their symmetries.  Regular geo-

metric figures, e.g., cubes, tetrahedrons, tessellated spheres, rectagons, and structures with well 

delineated equal scales of grids on the surfaces, have scales that are common among orienta-

tions.  These regularities can be the basis of unifying structures.  Additionally, structures that 

contain interconnected elements of about the same size that are semi-randomly oriented provide 

effective rotational coupling.  Although this may seem to be a difficult condition to meet, it is 
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quite common.  For instance, stick-and-ball molecular models and finite-element delineated 

structures are self-scaling in depth.   

3.4. PERSPECTIVE 

For most implementations of perspective in spatial displays, there have been no consis-

tent results in producing reliable, correct perceptions of spatial location and orientation of 

elements in space when perspective is used as a cue to depth (Ellis, Smith, & Hacisalihzade, 

1989; Yeh, & Silverstein, 1992).  As a general rule, SFM space, and, for that matter, stereopsis 

space, should have less—one-half to one-quarter—of the perspective present in the actual 

distances and locations involved.  A reduced representation of perspective is consistent with the 

perception of an affinely structured space, since the visual system scales the depth from other 

information and can benefit from the decrease in non-affine transformation inherent in the 

perspective mapping.  The efficacy of reduced perspective in displays is consistent with the 

finding of Cutting (1991) that the visual system is quite insensitive to distortions due to affine 

transformations, including shear strains, but is sensitive to the non-affine distortions of 

perspective.   

For a perspective view to be effective, there needs to be a continuity in depth that 

provides a continuum of near-affine transformations.  In motion pictures, although the objects 

move in E3, the camera, projector, and viewer position subject that space to affine and non-

affine transformations.  With no depth continuum such as a telephoto lens shot with no objects 

at intermediate depths, the continuity is missing, and one affine space appears to abut a 

significantly different space that is not a near-affine transformation, resulting in perceptual 

distortions.  Extreme perspective, produced with the use of a short focal-length lens, creates 

significantly non-affine transformations, and should produce a less compelling perception of 

rigid, undistorted space in projection (Cutting, 1991).  Let us move to a more formal discussion 

of perspective transformations that can be used in the development of a display. 
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The display depth space is normalized to the vectorfield.  The use of perspective requires 

a method of mapping perspective space into a vectorfield, V .  To do this, mapping functions, 

f m, can be developed.  We can consider that the vectorfield, V , is to span some specific depth 

in perspective space (Fig. 3.7).  V  has a span of +V m to -V m for which V m defines the maxi-

mum vector length.  The nodal plane, N p, lies at the zero length vector.  In a binocular system, 

N p would be considered the plane of convergence, and +V m might not equal -V m, as depth of 

field for some people is greater in the crossed than in the uncrossed disparities.   

The general format of the perspective mapping function can be modeled in three ways: 

1. As a non-affine transform. 

2. Locally, as an affine transform in all directions. 

3. Intermediate, as a semi-affine transformation whereby z-axis is affine, and x 

and y have perspective compression with depth.  This is a good model that 

will be useful for most displays.   
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3.4.1. Non-affine Transformation 

A non-affine transformation for perspective is a full modeling of perspective in which all 

dimensional unit vectors, ui, are compressed as depth (e3) increases.  The equation below is 

written with the origin at the same location as the observer.   A defined subspace can be placed 

in the perspective space.  The form of the mapping function transformation is: 

                                                      

Figure 3.7. Perspective depth span relative to vectorfield. 
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ui' = uiβ i/e3,  i = 1, 2, 3 for Euclidean (E3) space, a unit vector.   (Eq. 3.1) 

β i = k,  i = 1, 2, 3.   (Eq. 3.2) 

ui = unit vector in Euclidean space, ui' = transformed vector.   

3.4.2. Affine Transformation 

By looking at the perspective depth span in Figure 3.7, one can see that for short depth 

spans relative to the distance between the observer and the window, W , over which there is no 

significant change in e1 (x), e2 (y), or e3 (z), a simple affine scaling function can be used.  This 

is a local model of perspective with no perspective transformation or compression of the x and 

y dimensions with depth.  The z-axis transformation is affine:   

ui' = uiβ i,  i = 1, 2, 3 for Euclidean (E3) space.   (Eq. 3.3) 

β i = k.   (Eq. 3.4) 

3.4.3. Semi-affine Transformation 

For some intermediate depth spans, the e1 and e2 directions have a significant 

perspective contraction with respect to e3, but depth can maintain a linear scale for normal 

affine scaling by the monocular scalar fields.   This is an intermediate model of perspective.  

The model can be considered a semi-affine transformation (z-axis affine, with x and y having 

perspective compression with depth).  This model can be used for most display situations.  Its 

rigorous form is:   

u
u

ei
i i' = β

3

 .   (Eq. 3.5) 

β i = k, i = 1, 2 and  (Eq. 3.6) 
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k is an appropriate constant.  A linear approximation can be made: 

ui' = uiβ i,    where (Eq. 3.7) 

βi

W ke

W
=

− 3� �
, i = 1, 2.  (Eq. 3.8) 

For either case there is no compression in the depth dimension: 

β i = 1, i = 3  (this is an affine transformation in depth).   (Eq. 3.9) 

The second form (Eq. 3.8) is the preferred one, as it more closely approximates an affine trans-

formation through the use of a small value of k.  As noted, perspective should be under-

represented to approximate an affine transformation of space.   

3.4.4. Application of Affining Levels 

These three levels of representation of perspective can be applied in roughly three ranges 

of depth spans (zs) in terms of the major screen dimension (usually width), W : 

1. non-affine transform (full representation): zs < W  

2. affine transform:  zs < 1/2 W  

3. semi-affine: zs < W  

 There is overlap in these affining level ranges.  Obviously the full non-affine transfor-

mation can always be used, but it is computationally more complex and often not required.  

One of the forms of the semi-affine transformation can be applied instead of the non-affine 

transformation for any zs of less than 1/2 W .  For depths of less than 1/2 W , the simple affine 

transformation can be used, with no compression of x, y, and z for depth.  The semi-affine 

transformation will be used in most applications, and can be considered the "default" condition 

since it defines a roughly cubical space.   



  

86 

4. EXPERIMENTAL METHODS 

This dissertation has three objectives: 

1. Creating the perception of 3-dimensional space from a 2-dimensional surface 

2. Testing the hypothesis of the perceptual equivalance of affine spaces 

3. Demonstrating that metric structuring largely controls the perception of affine 

spaces.   

These objectives are related.  A 3-dimensional display was generated by producing affine 

structure-from-motion (SFM).  The perceptual equivalence of different affine spaces was dem-

onstrated within the display.  The perception of the sizes of structures within the affine space 

display was controlled with metric factors.   

The experimental methods have two principal components: 1) the experimental design, 

and 2) the display generation.  Since the specifications for the experimental stimulus display 

provide the basis for the hardware selected and the software design, the experimental design 

will be discussed first.   

4.1. EXPERIMENTAL DESIGN 

According to the hypothesis, the metric scaling of an affine structure is the primary 

determinant of spatial structure.  An hypothesis is that under appropriate conditions, one can 

generate an affine space independently of the scaling, or metrification, of that structure.  A test 

of the independence of metric processes in perception requires the independent manipulation of 

affine structure and metrification.  The independent variables of this experiment must include 

an affine manipulation and a metric factor.  A dependent response that is variable and 

potentially responsive to perceived metric structure is required.   

The response variable should reflect a subject's perception of metric space.  It should be 

quantifiable.  A stimulus is required that does not have an inherent metric structure.   A cube 
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has an inherent metric structure.  A pyramid does not have an inherent ratio of height-to-width, 

or aspect ratio.  The height of a pyramid relative to the width of its base is indeterminate when 

viewed monocularly from the top (Fig. 4.1).  This view projected onto a flat surface provides 

inadequate information to determine the pyramid's aspect ratio, except (as in Fig. 4.1) to 

indicate that if the four faces are not equal, the structure cannot be flat.   

 

Figure 4.1. The top view of a pyramid. 

The pyramid was placed in an affine space and metric factors were applied.  The metric 

structure was a square-front-faced rectangle of dashed lines.  The stimulus was comprised of a 

pyramid centered in the metric structure, such as in Figure 4.2.  The entire space was shear-

strained along the x and y  directions to make the dashed risers visible.  Affine space was 

generated using shear-strain structure from motion (SFM) as described previously.   
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Figure 4.2. A typical display stimulus. 

The affine space was created with 256 levels in depth by defining the depth dimension as 

an eight-bit variable (28 = 256).  Three affine pyramids were used, with affine spans of 102, 

160 and 240 levels.  The spans were adjusted to match the ratios achievable for the metric 

structures.  These pyramids had affine height ratios of approximately 2/3 : 1 : 1-1/2 or 1 : (1×1.5) : 

(1×1.5×1.5) (Fig. 4.3).  This is a logarithmic series, producing a constant perceptual difference 

among pyramid levels according to Weber's law of proportionality of detectability.   

Four levels of metric structures were used.  These are illustrated in Fig. 4.4.  The front 

and back planes are squares of 6.3 cm, with 6 dashes per edge.  The space between dashes was 

twice the length of the dash.  The front face was 16 dash units wide and high.  Metric level 1 

had 4 dashes in depth, or a depth of 10 dash units.  Metric level 2 had 6 dashes in depth (16 

dash units), and metric level 3 had 9 dashes in depth (25 dash units).  Metric levels 1 - 3 

spanned the entire affine space of 256 levels.  The metric level 0 had no depth; it was a square 

lying at the nodal plane.   
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Gross static affine shear-strains in the x (OX) and y  (OY) directions were applied to the 

affine space (Fig 4.5).  These offsets were adjusted for each metric level such that the angle of 

the metric structure risers would be constant in the display.  The display had a screen resolution 

of 1024 × 768 pixels.  The affine space with the metric level 2 was subjected to gross offset 

affine shear-strains of OX = 36, OY = -20.  The metric level 1 shear-strains were 2/3, and the 

metric level 3 shear-strains were 1½ of metric level 2 (Table 4.1).  This maintained the same 

logarithmic series used in the metric structure and in the pyramid affine aspect ratios.  The 

pyramid and metric structures were both subjected to the same gross offset shear-strains.   

 

Figure 4.3. Profiles of the stimulus pyramids in affine space. 
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Figure 4.4. The four metric structures. 
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Table 4.1. Metric level risers and offsets. 

Metric 
Level 

Riser 
 Units 

OX OY 

0 0 0 0 

1 6 23 -13 

2 9 36 -20 

3 25 59 -31 

 

 

Figure 4.5. Metric shear-strain offsets. 

All structures were subjected to a semi-affine perspective transformation.  The x and y  

dimensions were reduced with increasing depth.  The same perspective was applied to all 

experimental conditions.  The perspective was applied to affine space, as opposed to metric 

space.  The affine space was transformed as if its depth were 7.5% of the distance from the 
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subject to the screen.  This is a very slight perspective transformation that served to prevent the 

display from appearing distorted by a lack of perspective.   

To provide clear separation of the metric structure and the pyramid, each was displayed 

in a different color.  The pyramid was displayed in green, the metric structure in yellow.  

Intensity decreased with increasing affine depth.  The same intensity depth-cueing was applied 

to all affine spaces.  The background was black. 

Affine space was generated through small affine shifts.  The small affine shifts deformed 

the space in a manner shown in Fig. 4.6.  These shifts were randomized in direction and timing.  

A six-position aperture circle of radius εεεε was used, with the aperture positions equally spaced 

around the perimeter (Fig. 2.25).  This pattern produced three aperture shift lengths: εεεε, 1.732εεεε, 

and 2εεεε.  The size of the affine vectors was proportional to the size of εεεε.  Four affine shift radii 

were used: 0, 2, 3, and 3.5 pixels, corresponding to affine levels 0, 1, 2, and 3.  Affine levels 1, 

2, and 3 maintained the same 1:1½ ratio among levels as was used in the pyramid levels and the 

metric levels.   

Changing the aperture shift radius εεεε changed the affine space.  A larger radius increased 

the vector lengths, consequently increasing the affine space depth.  The affine depth of the 

structures embedded in the space changed with the space, as shown in Figure 4.7.   

A relative shift duration of 1 follows an aperture shift of 1 unit.  A shift two positions 

around the aperture set has a relative magnitude of 1.732, and subsequently a relative time 

duration of 1.732.  A three position shift, across the diameter, has a relative shift magnitude of 

2 and a resulting duration of 2.  If one considers saccades to occur randomly in time (Mates 

1978), then the intervals between saccades can be modeled as having a Poisson distribution.  

The timing of the pseudosaccades followed an approximately Poisson distribution of 3:3:2 for 

the relative shift durations of 1, 1.732, and 2 respectively.  A random sequence was generated 

from a total of 48 shifts.  The computer program tested random sequences until it produced one 
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in which all aperture positions were occupied an equal number of times, ±1.  Using the expo-

nential decay model of the disparity drive, the duration of time after a shift was made propor-

tional to the magnitude of the shift.  The shortest shift used in the experimental trials was 180 

ms.  The mean duration between shifts was 272 ms.   
 

 

Figure 4.6. A shear-strain shift for producing affine structure. 
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Figure 4.7. The same affine pyramid in two affine spaces. 

Conceptually the gross offset shear-strains, depth intensity cueing, perspective, and SFM 

pseudosaccadic affine shifts were applied to the affine space, and consequently to all structures 

depicted in that space.   

Subjects were asked to judge the aspect ratio of the pyramids.  The response scale (R) 

was a set of figures of ten pyramid profiles (Fig. 4.8).  The aspect ratio of the profiles from 1 to 

9 spanned the same range as would be predicted for the stimuli presented.  A pilot study with a 

larger span indicated that an extended span was not necessary, as responses fell within the 

predicted span.  Scale values 1, 3, 5, 7, and 9 corresponded to the figures actually presented.  

Scale values 2, 4, 6, and 8 followed the logarithmic nature of the scale.  Scale figure 0 was a 

line, indicating a flat figure.  If subjects used the largest triangular face of a pyramid as the 

basis for their judgments, the result would be to increase the mean response, as the M = 0 view 

of a pyramid face has the appearance of a scale level 2.  This judgment base would also slightly 

collapse the scale.   

The theoretical response (R) scale value of a pyramid can be calculated as: 

R P M= + −2 2 3. Eq. 4.1 
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The scale value of stimuli with metric levels of 0 is indeterminate; consequently, it was 

declared as 0.  Based on the vector-scalar product model, an affine level of 0 also provides in-

adequate spatial information for aspect ratio determination.  Note that a scale level can 

produced by several different combinations of pyramid and metric levels.   

The use of the same ratio among pyramid levels, metric levels, and affine levels 

produced stimuli that had the same display image for different conditions.  For instance, A 

pyramid of level 2 in a metric space of 3 had the same image as a pyramid of level 3 in a metric 

space of 2.  Similarly, a pyramid of level 2 subjected to an affine shift of level 3 underwent the 

same image transformations as a pyramid of level 3 subjected to level 2 affine shifts.  This 

strategy of common multiples was intended to prevent the subjects from using the flat display 

image in a meaningful way in their judgments.   

   The three independent variables were used to produce a total of 48 conditions, each 

represented once per block of trials: 

     • 4 affine aperture shift levels (0, 2, 3, 4.5) 

     • 4 metric levels (0, 4, 6, 9) 

     • 3 affine pyramid levels (102, 160, 240). 

Subjects were first shown a demonstration of the SFM display.  Three objects were 

presented.  The first was a green monochrome cube with all corners connected.  The cube 

spanned an affine space of level 2.  Subjects were encouraged to visually explore the space.  

The second presentation was of a stick model of a glucose molecule in a "chair" configuration.  

Two colors, green and yellow, were used.  Finally, a full hierarchical structure of 2 × 3 dashed 

yellow cubes with a green pyramid in the lower center cube was presented.  The subject was 

instructed that he or she would be making judgments of the aspect ratio of the pyramid.  All 

subjects readily reported the spatial structures as three-dimensional, but not all subjects saw all 

pyramids as being completely within the metric structure.   
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Figure 4.8. Response scale. 
The scale for reporting the aspect ratio of the pyramid profiles. 

Following the introductory demonstration, the subjects performed a practice block which 

included instructions (see sec. 8, Appendix).  This practice ensured that all subjects received 

the same instructions.  Subjects were instructed to use the profile scale that was placed on a 

stand below the CRT display, facing the subject, to estimate the aspect ratio of the pyramid in 

the display.  Subjects responded by pressing an appropriate number key on a standard computer 

keyboard.  Non-numeric entries were not accepted; a low tone sequence denoted an in-
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appropriate response.  Immediately after the keypress the screen was blanked, and a new pres-

entation was loaded into the computer memory and displayed.  This required 10 seconds.  The 

trials were self-paced by the subject, with no time limit.  The computer automatically recorded 

the conditions and results.   

Each subject responded to 3 blocks of 48 trials each.  The trials were individually 

randomized by the computer with no repeated blocks.  Subjects were told at the start of the 

experiment that they would have 3 blocks of trials with a five-minute break between blocks.  

The program instructed the subject to take the break at the end of each block.  They were told 

that a block ordinarily took about 20 minutes to perform, but that they were under no time 

constraints.   

The experiment was conducted in a quiet office environment with lowered light levels.  

The subject was alone in the office; I was in the next room.  The adjoining door was open.   

Twelve unpaid volunteer subjects were drawn from my acquaintances, eight males and 

four females, ranging in age from 32 to 65 years old.  All use personal computers.  All were 

currently enrolled in, or had completed, college.  All subjects used appropriate visual correc-

tion, if required.  All subjects reported normal color vision.  All subjects successfully com-

pleted the task.  Use of human subjects was approved by the Institutional Review Board on 

Research Involving Human Subjects at North Carolina State University.   

4.2. DISPLAY 

A display system was developed to implement the experimental design.  The display 

requirements include: 

• The ability to present figures that are made up of lines, or vectors, (wireforms) 

using any number of vectors 

• Depth intensity cueing (4 bits) 
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• The ability to move line positions and orientations by small amounts (< .5% of the 

display width) 

• Generation of gross and fine affine shifts in displayed structures 

• Synchronous image change over the entire display 

• Randomized presentation of six image frames 

• Pseudorandom timing of shifts 

• Automatic data logging.   

There are two general classes of display requirements: 1) image characteristics and 2) 

timing.  These considerations were addressed in the selection of the hardware and the design of 

the software.  Although the principles developed above can be applied to forms with colored 

surfaces, this study used simple vector drawings. 

Producing an effective small-motion affine SFM display requires the ability to plot forms 

as continuous lines that change in position and orientation by small amounts.  The pixel resolu-

tion of a standard computer display would have unduly limited the resolution needed for the 

experiment.  Normal computer CRT displays are made up of dots in a rectilinear matrix of 

columns and rows.  Images are plotted by changing the illumination level of each dot, or pixel.  

Thus the image resolution appears to be equal to the size of the dots.  This limits the character-

istics of a display due to aliasing.   

Aliasing produces an irregular appearance in lines drawn at any angle other than the 

vertical or horizontal.  Fig. 4.9 illustrates the problem.  Lines generated at non-axis angles are 

produced as a series of steps.  As the angle of the line changes, the pitch of the steps will 
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change.  Thus, if the line undergoes a small rotation, small features are generated on the lines 

that change in a manner that does not reflect the actual behavior of the line.   

 

Figure 4.9. Examples of pixel aliasing. 

The amount by which a point can be shifted in such a pixel-plotted image is limited by 

the size of the pixel.  This is the pixel resolution of the display.  There are two ways to improve 

the resolution of the display and also decrease the effects of aliasing: 1) increase the screen 

pixel resolution, 2) use antialiasing techniques.  Both were used to create an effective display.   

Antialiasing produces increased perceptual resolution, particularly under motion.  

Antialiasing utilizes the fact that perceptual spatial resolution is greater than is specified by 

spatial frequency (Burr, 1980).  Antialiasing is achieved by plotting the center of brightness of 

a line.  Flanking pixels are plotted at reduced intensity to decrease the discrete steps.  This 

center-of-brightness plotting technique permits the movement of a line by less than the size of a 

pixel.  This was used to achieve the small affine SFM image transformations.  The screen pixel 

resolution was 1024 × 768.  The computer program used a 2X subpixel plotting technique to 

achieve antialiasing (Covington, 1990).  Lines were plotted with a modification of Bresenham's 

line algorithm (Annino & Driver, 1986).  The modification plotted in three dimensions to allow 

intensity modulation with depth, or intensity depth cueing.  All images were precomputed and 

stored on a hard disk.   
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The two colors that were used, green and yellow, were stored in the graphics card digital-

to-analog converter (DAC) look-up table.  Each color was formed from a mixture of the phos-

phor colors, red (R), green (G) and blue (B).  Each phosphor color was defined with 6 bits, 

providing 63 intensity levels for each phosphor.  The display colors were generated by mixing 

the colors to provide different intensities with no hue change.  Green was formed from a ratio 

of R:G:B of 1:2:1; yellow was a ratio of 1:1:0.  To provide gamma compensation for phosphor 

response the summed intensities followed a logarithmic curve: I = K*Ln((DAC mod 

64)+O)+M.  A color calculation program took as input the level, M, for the lowest intensity, 

and an offset, to create the curve between the minimum intensity and the maximum intensity 

(127).  A minimum of 45 and an offset of 10 provided good antialiasing and good depth-cueing.  

All figures were plotted as lines (vectors) in depth, with decreasing intensity for increased 

depths.  Each pixel was defined by 1 byte: 6 bits of intensity, 2 bits of color.  Only two colors 

are used, using 127 of the 256 DAC values. 

The display was presented on a NEC 4FGe 15" CRT color monitor.  Because this 

monitor does not have an etched screen, it provides a sharper image.  The image size on this 

monitor can be adjusted, as can the color balance.  This is a good monitor for psychophysical 

experiments.  The display was fitted with a modified anti-glare filter. The optically coated 

antiglare filter was mounted in a bezel which slides onto the monitor.  The filter had a trans-

mission of 31%.  To increase the display brightness ratio (DBR), the bezel was painted flat 

black.  A 6"-deep visor was attached to the bezel.  The inside surface of the visor was also 

painted flat black.  The visor reduced the light falling on the bezel, increasing the DBR further, 

and on the screen, increasing the pixel contrast ratio (PCR).  The resulting image was sharp and 

clear.  The display surface was nearly invisible in an office with low light.   
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The program was written in Borland Pascal 7.0 for an AT-compatible 486DX personal 

computer with a clock speed of 66MHz with 16MB of RAM.  The computer had an ATI 

UltraGraphics video card with 2MB of video RAM.   

The timing requirements of the display process were unusual.  As pseudosaccades with 

pseudorandom timing were used for the aperture shifts, precise timing was not necessary.  On 

the other hand, in order to maintain image change coherence over the entire screen, the entire 

display image had to change at one time.  These two requirements together created an oppor-

tunity for a cost-effective display.  The image generation and the image display changes can 

proceed asynchronously.   

Pixel-based computer video systems produce an image by reading a buffer memory over 

and over for each frame refresh.  Rather than attempt to produce a new image in a frame buffer 

within one frame refresh interval, one can produce the images in separate frame buffers and 

then switch the frame buffer during the vertical retrace.  This strategy provided adequate time 

to transfer an image into a frame buffer without loss of coherence in the image change in the 

displayed frame.   
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5. RESULTS 

5.1. GROUP RESULTS 

A total of 1728 reponses were collected from 12 subjects.  All subjects successfully 

completed three blocks of 48 trials each.  The subjects' responses correlated with, but did not 

match, the calculated heights of the pyramids (Fig. 5.1, Table 5.1).  The subjects tended to 

overestimate the heights of the pyramids, especially at the low end of the scale.  The intended 

mean height was 3.75; the subjects' mean response was 5.545 (σ = 1.824, Std. Error [S.E.] = 

0.044).   

Stimulus Presented
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3
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5

6

7

8

9

0 1 3 5 7 9

 

Figure 5.1. Mean responses to stimuli with ± 1 std. dev. 
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Table 5.1. Responses compared to stimuli presented. 
Data from all subjects combined. 

Stimulus Level Presented
0 1 3 5 7 9 Responses

Response  0 10 0 0 0 0 0 10
1 19 0 0 2 0 0 21
2 56 2 2 0 1 0 61
3 87 18 12 5 0 0 122
4 168 23 37 18 3 0 249
5 156 39 70 92 18 1 376
6 127 13 62 90 70 45 372
7 62 5 14 77 79 45 282
8 37 6 5 17 26 34 125
9 34 2 14 23 19 18 110

Presentations 756 108 216 324 216 108 1728  

Most strikingly, the subjects' responses did not reflect the large number of stimuli with 

metric (M) levels of 0.  A metric level of 0 has a theoretical pyramid profile of 0 on the 

response scale.  The mean of responses to stimuli with non-zero metric levels was 5.964 (σ = 

1.577, S.E. = 0.044).  This is larger than the mean of the non-zero metric level stimuli (mean = 

5.00, σ = 2.310, S.E. = 0.064) .  Clearly the metric = 0 stimuli did not produce an equivalent 

number of responses near 0.  The mean response for those stimuli with non-zero affine (A) 

levels was 5.733 (σ = 1.724, S.E. = 0.048), again, considerably higher than the stimulus mean.   

The main effect was that metric level and pyramid level were monotonically related to 

mean response at all affine (A) levels.  An increase in either variable, M or P, produced an in-

crease in mean response level as measured with the pyramid profile scale.  This significance 

was reflected in the ANOVA (F test) shown in Table 5.2, which indicates very low 

probabilities that chance phenomena could account for the result.  Affine level was only 

dichotomously effective, with significance only between a zero and a non-zero state.   

Averaging the responses across all pyramid levels for the means of the responses by 

metric levels and by affine levels reveals that the metric level affects the perception of the 
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height of the pyramid compared to its base, as shown in the "Metric Means" plot in Fig. 5.2.  

The greater the level of metric structuring, the greater the perceived height.  Affine level 

produced its greatest effect only between the zero and non-zero levels (Fig. 5.2).  Converting 

the affine level to a dichotomous variable of 0 and 1 by substituting 1 for all non-zero levels did 

not change the significance in the factor analysis of variables (ANOVA) from the multilevel (p 

< 0.0001, F3,1719 = 29.72) to the dichotomous (p < 0.0001, F1,1718 = 82.41) affine variable, and 

did produce a significant small M*P interaction component (p < .005, F3,1718 = 4.31).   

The subjects' responses to the metric = 0 condition (Fig. 5.3) were also different from 

those to higher metric levels.  With the 0 metric condition (Fig. 5.3), the response differences 

among pyramid levels was small, though significant (see Table 5.2).  Each point in Figures 5.4 

and  5.5 represents one of the 48 stimulus conditions and is the mean of 36 responses.  The 

effect of affine levels was also significant and larger than that of the pyramid level in the metric 

= 0 condition.  The estimated regression parameter for affine level (0.4852) was also larger 

than for pyramid level (0.2847) at the 0 metric level.  This was not true at higher metric levels, 

where both the F value and the estimated regression parameter were larger than for affine level 

(Table 5.2).  Clearly the effects of zero affine and metric levels were different from those for 

the non-zero levels.  A model using each of the parameters as a main effect was statistically 

significant (p < 0.0001, F8,1719 = 105.6), however.   
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Figure 5.2. Metric and affine means of all responses. 
Metric means are collapsed across affine levels, affine means 
are collapsed across metric levels.  Upper and lower 95% 
confidence interval of the means shown.  Each point is the 
mean of 432 responses collapsed across pyramid levels and 
subjects. 
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Figure 5.3. A metric = 0 image. 

An analysis of a subset of records that contain neither metric = 0 nor affine = 0 levels 

(972 records) allows us to look at the effects of affine level and metric level, the main subject 

of this dissertation.  Selection of this subset is a reflection of both the dichotomous nature of 

the affine level and of the atypical appearance of displays with a 0 metric level.  This subset 

produces significant effects for both the metric level (p  < 0.0001, F2,965 = 73.16) and the 

pyramid level (p  < 0.0001, F2,965 = 97.01).  As discussed in the experimental design, the 

purpose of multiple levels of pyramid aspect ratios was to provide stimuli that the subject could 

not recognize on the basis of their affine shifts.  The metric and pyramid regression parameters 

were both significant (Table 5.2).  With this subset of data, however, the affine parameter was 

no longer significant (p  < 0.2037, F2,965 = 1.59) in the determination of the subjects' 

responses.  This was also reflected in the small estimated affine regression parameter.  The M = 

0, A = 0 condition reduced the effect of the pyramid independent variable to insignificance (P > 

0.7876, F2,105 = 0.24), indicating that shading alone was inadequate to separate pyramid levels.   
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Figure 5.4. Response means for each metric level. 
Each plot has responses separated into the 3 pyramid levels.  The 

lower line is means for pyramid 1, the upper line is means for 
pyramid 3.   
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Figure 5.5. Response means for each affine level. 
Pyramid levels plotted separately.  In each plot,  the lower line 
is for pyramid level 1, upper for pyramid level 3.  These are the 

same data as in Fig. 5.4, arranged differently.   
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Table 5.2. Parameter estimates and significance tests. 
Analysis by metric groups and for all data grouped together.  
Linear regression parameter estimates with T tests.  F tests of 
ANOVAs.  Data from all subjects pooled.   

METRIC 0 1 2 3 All All w/o 
Metric = 0 or 
Affine = 0 
records 

Parameter - - - - 0.7586 0.6173 

p  < T - - - - 0.0001 0.0001 

p  < F - - - - 0.0001 
F3,1719 = 
188.62 

0.0001 
F2,965 = 73.16 

PYRAMID       

Parameter 0.2847 0.6667 0.6424 0.8333 0.6068 0.7130 

p  < T 0.0092 0.0001 0.0001 0.0001 0.0001 0.0001 

p  < F 0.0340 
F2,420 = 
3.41 

0.0001 
F2,420 = 
29.46 

0.0001 
F2,420 = 
33.95 

0.0001 
F2,420 = 
64.47 

0.0001 
F2,1719 = 
94.89 

0.0001 
F2,965 = 97.01 

AFFINE       

Parameter 0.4852 0.2537 0.2046 0.1759 0.2799 0.0895 

p  < T 0.0001 0.0001 0.0004 0.0012 0.0001 0.0814 

p  < F 0.0001 
F3,420 = 
144.07 

0.0005 
F3,420 = 
6.07 

0.0007 
F3,420 = 
5.79 

0.0045 
F3,420 = 
4.41 

0.0001 
F3,1719 = 
29.72 

0.2037 
F2,965 = 1.59 

A more detailed analysis of the effects of pyramid level and affine level within each 

metric level is presented in Table 5.3.   To illustrate the dichotomous nature of affine level, 

these data do not include the A = 0 records.  Without the A = 0 data, affine level was not 
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statistically significant even within the M = 0 level (p  < 0.0891, F2,319 = 2.44).  These results 

can be compared with those of M = 0 which include the A = 0 data in Table 5.2.  The M = 0, A 

= 0 condition does not allow a reliable separation of pyramids by aspect ratio (p  < 0.0219, 

F2,319 = 3.87).  This result is not surprising, as there was inadequate information to make such 

judgments.  The only available relative depth information was the slight difference in intensity 

spans among pyramid aspect ratios.  The effects of P and A were quite different between the M 

= 0 and the M > 0 metric levels.   

Table 5.3. Analysis by metric level. 
Affine levels greater than 0. 

Metric Level 0 1 2 3 

Pyramid  
Param. Est. 

0.3380 0.6852 0.6343 0.8194 

p  < T 0.0057 0.0001 0.0001 0.0001 

p  < F 0.0219 
F2,319 = 3.87 

0.0001 
F2,319 = 25.16 

0.0001 
F2,319 = 27.88 

0.0001 
F2,319 = 47.49 

Affine 
Param. Est. 

0.2685 0.1389 0.0556 0.0741 

p  < T 0.0278 0.1502 0.5164 0.3808 

p  < F 0.0891 
F2,319 = 2.44 

0.3483 
F2,319 = 1.06 

0.8089 
F2,319 = 0.21 

0.5997 
F2,319 = 0.51 

The experimental design contains a confound.  Each of the three non-zero metric levels 

has X and Y shear-strain offsets (OX, OY) that are directly proportional to the metric depth, as 

can be seen in Table 5.1 of the experimental design.  This proportionality was intentional, as it 

served to maintain a constant angle for the risers of the metric structure.  The use of the same 
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riser angle at all times served to make the number of riser dashes, and the offsets between the 

front and rear planes of the metric structures, effective metric factors.  Thus, the offset slant 

over the affine space of the metric structure is directly related to the metric level.   

The pyramid top is offset from the center of the pyramid bottom in the image on the 

screen by the slant of the metric offset.  For each metric slant, the amount of offset of the 

pyramid top is a function of the pyramid level.  The three non-zero metric levels and the three 

pyramid levels are each in multiples of about 1.5.  Multiplying the metric slant, normalized for 

the level 1 slant, by the pyramid level, normalized for pyramid level 1, produces a pyramid top 

offset value.  This is an image variable, and not a function of affine level.  The relationship 

between the image variable and the calculated pyramid height (Eq. 5.1) is summarized in Table 

5.4.  The correlation between the image variable and the scaled height of the pyramid is 0.960.  

The height scale is logarithmic.  The correlation between the log of the image variable and the 

scaled pyramid height is 0.998.  Thus, the image variable is a reliable predictor of pyramid 

aspect ratio.   

The image variable is a significant factor in a model for the response when analysed by 

an ANOVA (Table 5.5).  The affine variable is dichotomous.  As when the metric and pyramid 

variables were used, the affine variable is significant for the A > 0 levels (all "No A = 0" data 

in Table 5.5) only when the M = 0 level is included in the analysis.  The A > 0 levels are only 

significantly different in effect when there is no other basis (a non-zero metric or image vari-

able) for scaling the pyramid height.  This is consistent with a hypothesis of the equivalence of 

affine spaces.   
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Table 5.5. Image variable in ANOVA model. 
The significance of the affine and pyramid variables when the 
image variable is included in the model.  The metric factor is 

never significant.   

   Variables    

 Image Affine Pyramid 

DATA F-Value P > F-Value P > F-Value P > 

ALL 153.64 
F5,1715 

0.0001 29.99 
F3,1715 

0.0001 5.75 
F2,1715 

0.0033 

No A = 0 or 
M = 0 

84.15 
F4,962 

0.0001 1.59 
F2,962 

0.2042 1.89 
F1,962 

0.1700 

No A = 0 108.36 
F5,1284 

0.0001 3.76 
F2,1284 

0.0235 6.62 
F2,1284 

0.0014 

No M = 0 109.65 
F4,1285 

0.0001 16.31 
F3,1285 

0.0001 1.88 
F1,1285 

0.1709 

Table 5.4. Normalized pyramid image versus scale height. 
H is the scaled height of the pyramid presented.  Pyramid is the 

pyramid level; Metric is the metric level.   

   Pyramid    

Metric 1 H 2 H 3 H 

1 1.000 1 1.569 3 2.353 5 

2 1.565 3 2.455 5 3.682 7 

3 2.565 5 4.024 7 6.035 9 
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The ANOVA above is based on a pooling of all subject data.  Each subject responded to 

each of the 48 conditions three times; therefore, a repeated measures ANOVA is appropriate.  

As can be seen in Table 5.6, this analysis does not significantly change the results.  Affine level 

is a dichotomous variable.  Affine level is not significant for those conditions in which affine 

and metric levels are both greater than 0.   

Table 5.6. Repeated measures ANOVA. 

 
All Data Affine > 0 

Metric > 0 

Affine P > 0.0001 
F3,22 = 25.23 

P > 0.2478 
F2,22 = 1.49 

Image P > 0.0001 
F5,22 = 129.24 

P > 0.0001 
F4,22 = 78.66 

5.2. INDIVIDUAL RESULTS 

The shortest time within which a subject completed a block of trials was 12 minutes, 53 

seconds (CCH).  The longest time was 55 minutes, 34 seconds (subject SAJ).  The responses of 

these subjects were not markedly different.  A full factor ANOVA of individual subject 

responses to all stimulus conditions and to only those conditions in which metric and affine 

levels were both greater than zero is summarized in Table 5.7.   

Affine level was significant (p  < .05) for 9 of the 12 subjects across all of the data 

records (Table 5.7).  Responses of only one subject (JWK) demonstrated significance in affine 

level when the data for the M = 0 and A = 0 stimulus conditions were excluded from the analy-

sis.  One subject demonstrated a significant effect of affine level in conditions where neither 

metric nor affine level were zero (F2,54 = 10.07, p  < .0002).  The regressed parameter estimate 
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for this subject's affine level effect, 0.3333 (T test: p  < 0.0002), was greater than for the entire 

subject population (0.0895, p  < 0.08, N.S.) but still considerably less than the estimated 

parameters for this subject's metric (0.7407, p  < 0.0001) and pyramid (0.9259, p  < 0.0001) 

levels.   

Seven of the subjects demonstrated a significant interaction (p  < .05) between metric 

and pyramid levels when all data were included; only three subjects showed significant 

interactions in the reduced subset.  One subject (SAK) produced all possible interactions when 

all data were included, but had significance for only M, P, and the MP interaction in the 

reduced dataset.  Two subjects (GDN, WLL) produced no affine effects at any level of the full 

factor model, even in the full data set.   

Table 5.7. Individual subjects' responses. 
Results of an ANOVA with all factors in the model.  Analysis 
of full data set and subset of data with no Metric = 0 or Affine 
= 0 stimulus records.  X indicates a significance of p  < .05.  M 
= Metric, P = Pyramid, A = Affine; MP = Metric*Pyramid, 
MA = Metric*Affine, PA = Pyramid*Affine, and MPA = 
Metric*Pyramid*Affine interactions. 

All Data   No Metric = 0 or Affine = 0 Records
Subject M P MP A MA PA MPA M P MP A MA PA MPA

CCH X X X X X X X
CSJ X X X X X X

GDN X X X X X
JSK X X X X X
JWK X X X X X X X X
MBH X X X X X X X X
RLD X X X X X X
RNJ X X X X X
SAC X X X X X X X
SAJ X X X X X
SAK X X X X X X X X X X
WLL X X X X  
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6. DISCUSSION 

6.1. CONCLUSIONS 

  The hypothesis in this dissertation is that the magnitude of the affine shift will not be 

the major factor in determining the subject's perception of depth.  Instead, affine structures will 

be independently scaled by metric factors.  This hypothesis was reflected in the results.  For the 

full set of data, which included both affine (A) = 0 and metric (M) = 0 conditions, the affine 

variable was significant.  When the data for the A = 0 and M = 0 conditions were removed, 

leaving three different non-zero affine levels, the affine variable was no longer significant, 

while the metric variable remained significant.  The results support the hypothesis.  The 

presence of any affine depth produced by SFM improves the perception of depth.   

The pyramid was scaled by the metric factors relative to the entire affine depth span.  

Therefore, if the affine space was reliably scaled for depth, subjects should be able to 

differentiate among the pyramid levels.  When M > 0, they could.  However, when M = 0, 

subjects made much weaker and less accurate discriminations among pyramid levels.  When M 

= 0, the regression coefficient for P was small (0.2847); when M > 0, the coefficient was 

considerably larger (0.7141).  The pyramid (P) variable was significant in both cases.  In the M 

= 0 condition, information is inadequate to scale the space.  Evidently, subjects were influenced 

by the size of the affine SFM movement in making judgments as reflected by the higher affine 

regression coefficient (for M = 0, coeff. = 0.4852; for M > 0, coeff. = 0.2054).   

The experimental display was designed to produce strong metrics, using both the 

surrounding structure and the shear-strain offset to provide metric information.  The product of 

the metric offset variable and pyramid variable created a confounding image metric variable 

which does not allow us to differentiate between the image metric and structure metric factors.  

The combined metric factors are significant.   
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In this experiment a constant depth slant angle was maintained to provide a consistent 

metric system.  Norman and Todd (1993) found that affine changes in the picture plane 

produced perceived distortions in the structure, although changes in the affine depth did not.  

Although the principle of affine equivalence is presumed to apply in all directions, sensitivity 

to changes in affine structure is not the same in all directions.  When taking one's seat in the 

movie theater at the front row, side aisle, it takes a while to become accustomed to the affine 

distortions.   

Tod and Norman's (1993) finding of sensitivity to affine transformations in the picture 

plane is at variance with an observation with the affine SFM display of this experiment.  When 

the psueudosaccade shifts were operating, one can move 75° off of the normal to the screen 

without a perceived distortion of the structure.  Yet such a motion does produce a large affine 

transformation of the retinal image.   

The purpose of this dissertation was to investigate the relative effectiveness of affine 

level and metric level in the perception of spatial structure in displays.  Clearly the roles of 

metric and affine variables differ.  The metric level is more important than affine level in 

controlling the perception of the scale of a spatial structure.  Any non-zero affine level 

enhances the perception of spatial structure, but does not control its metrification.  The 

dichotomous effect of the affine variable supports the hypothesis that non-zero affine levels are 

equivalent.  Affine level alone, in the absence of metric factors, was not adequate to produce a 

reliable scaling of depth.  The perception of spatial structure is non-Euclidean; there is no 

disparity-based scale for depth.   

The model of the perception of metric structure (Fig. 6.1) parallels the intial vectorfield-

scalar field model of Fig. 1.1.  The significance is that the perception of metric structure 

involves an intermediate perception of affine structure which is subsequently metrified.  The 

use of an affine intermediate is conceptually simpler than attempting to derive metric structure 
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from disparity information alone.  It allows the CNS to perceive a structure independent of its 

location relative to the observer, given adequate information to scale the affine structure.  This 

emancipates the observer from the computational difficulties inherent in the perception of 

structure from an egocentric viewpoint.  One result of this perceptual process is the ability to 

perceive metric structure correctly in motion pictures viewed from the "front row, side aisle" 

(Cutting, 1987) and in pictures viewed at a slant (Cutting, 1990).   

 

Figure 6.1. Perception of metric structure. 

That the standard deviations of the subjects' responses to the non-zero metric stimuli 

were smaller than the standard deviations of the stimuli themselves indicates a tendency to 

collapse responses to some mean value.  This follows from the very small number of "zero" 

responses.  Both of these results can be considered as analogous to a specific distance tendency 

(Gogel, 1977).   

When the metric level and/or the affine level are 0, the information does not adequately 

specify a pyramid aspect ratio, yet subjects' responses indicate a non-zero perception of depth.  

The stimuli had intensity modulation, being darker with greater depth.  The 63 levels of gray 
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scale in each color produced a perceptually continuous shading of lines that receded in depth, 

such as the edges of the pyramid.  The intensity span was constant for the affine depth and did 

not vary for different metric levels.  Thus, intensity provides a very weak differentiation among 

the affine pyramids.  Shading is not generally a strong factor for the perception of metric shape, 

however (Erens, Kappers, & Koenderink, 1993; Bülthoff & Mallot, 1988).   

One cannot analyze the results of one particular experimental condition separately from 

the context of the entire experiment.  The M = 0 condition was presented in the context of other 

pyramids which had clearly perceived depths.  Subjects were predisposed to perceive pyramids 

as opposed to flat figures.   

The original model of the perception of spatial structure was the product of a vectorfield 

and a scalar field (Fig. 1.1).  If either vectorfield or scalar field is 0, then the perceived depth of 

a structure would be zero.  Clearly, when either A = 0 or M = 0, the subjects' responses were 

not zero.  I propose that a zero affine level is not the same as a zero vectorfield, and that a zero 

metric level is not the same as a zero scalar field.   

It is useful to ask "What would a zero level of vectorfield or scalar field mean?"  The 

model of the CNS used here is a properties model, as opposed to a computational model.  Such 

a model is based on the physiological activity of neuropile.  Physiological activity has a base 

level of randomness, i.e., of noise.  This noise is a significant determinant of the threshold level 

of detection.  A zero vectorfield or scalar field would imply a zero noise level.  This is not 

possible.  The threshold field level is, therefore, non-zero.  The threshold level determines the 

effective residual field level, which is not zero.  Thus, one can envision a non-zero threshold 

vectorfield and a non-zero threshold scalar field.  The vectorfield and scalar field are 

apertures.   

In this experiment, the experience of viewing pyramids leaves a residual noise pattern in 

the CNS consistent with a pyramidal structure.  As What and Where are separately located in 



  

119 

the CNS, this pattern of residual activity, superimposed on a random physiological noise level, 

provides a residual vectorfield and/or scalar field.  Thus, the M = 0 and A = 0 experimental 

conditions do not result in the perception of a flat surface.  If the surface of the display screen 

were apparent due to dirt or glare, a zero metric field would be generated, probably suppressing 

the perception of depth to some degree.   

From a theoretical standpoint the perception of spatial structure is different under 

"reduced cue" conditions that do not provide adequate information for determining spatial 

structure.  Although the principal focus of this dissertation is the perception of spatial structure 

from adequate information, it is interesting to note that subjects did perceive depth when 

information was inadequate, and therefore that the effects of the affine factor are quite different 

from its effects when adequate information is available.  This summary is consistent with 

Gibson's (1950) contention that one cannot draw conclusions about the nature of perception 

from conditions that do not provide adequate information.  In this dissertation I have investi-

gated how adequate information is used to perceive spatial structure.  This information can be 

directly applied to the display of spatial structures.   

6.2. THE AFFINE INTERMEDIATE IN DISPLAYS 

Effective spatial displays can be developed by using an intermediate affine structure 

stage.  The design of a 3-dimensional display can be achieved in three steps: 

1. define the affine display space 

2. map the spatial structure(s) into the affine space 

3. develop metrics to scale the affine structure. 

The affine space is defined in terms of the disparity that will generate it.  In the proposed shear-

strain SFM display, the affine space is defined by the front and back planes of maximum shift.  

In a stereoscopic display, it is defined by the maximum crossed and uncrossed stereo dispari-

ties.  Note that effective eye separation is not the principal variable.  The unimportance of the 
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amount of eye spacing in stereoscopic displays is a result of the affine equivalance principle, 

whereby stereo disparity and convergence do not provide metric information in the presence of 

other metric information.  A stereo display is equivalent to the A > 0 condition in the experi-

ment.  The affine space is then scaled linearly by metric factors within these limits.  The spatial 

structure is mapped into the affine space by normalizing the depth to the limits of the affine 

space, thus causing the spatial structure to span the entire affine depth.   

The affine structure is then scaled through metric factors.  These have been described in 

Section 1, above.  They are: 

• Sequencing 

• Ordination 

• Cardination 

• Metrification 

• Absolute Scaling 

Frequently displays do not have any affine structure per se but must rely on the non-zero 

threshold vectorfield implied from the random physiological noise in the CNS.  In other words, 

if the display is a flat screen with no disparity, strong image characteristics which define its 

spatial structure must be used for an effective display.  Using a strong metric system in a zero 

affine, or zero disparity, display will produce the perception of spatial structure, since the 

metric scalar field will interact with the non-zero threshold vectorfield to produce a perceived 

non-zero metric structure.  A display which does not incorporate all levels of metric scaling is 

apt to provide an unreliable perception of spatial structure and should be avoided.  Thus the list 

above provides a checklist for evaluating a proposed display.   Any missing metric levels will 

degrade the reliability of the perception of structure in the display.  A display with affine 

structure but no metric structure is ambiguous and will lead to a wide variety of perceptions of 

spatial structure by the viewer.   A display with inadequate continuity in the structural 
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hierarchy can also produce misperceptions.  The experimental display applied the metric to the 

display space, but not to the pyramid directly.  This reduced cue condition allowed some 

subjects to occaisionally see the pyramid as in front of the metric structure.  This lack of tight 

coupling between the metric structure and the pyramid may also be partially responsible for the 

under-reporting of the range of pyramid heights.   

The importance of display metrics has been clearly demonstrated.  A method for creating 

an affine structure that is scaled by those metrics in a display has been demonstrated.   

6.3. TOPICS FOR FUTURE RESEARCH 

Research invariably raises more questions than it answers.  The parameters for the 

pseudosaccade were selected for appearance.  A more complete study of the optimal base time 

as a function of display complexity, and of the optimal number and spatial distribution of aper-

ture positions would be fruitful.  The pseudosaccades are based on affine shifts—what would 

be the effect of simultaneous animation of the display?  As animation would be asynchronous 

and thus incoherent with the shifts: the two should proceed without conflict.  Preliminary 

studies indicate this to be the case.   

The perception of spatial structure in the affine SFM display is quite robust.  This 

perception persists even when the display is viewed off-axis.  Moving one's viewpoint 75° off-

axis does not produce a distortion in the perceived structure.  Instead, the orientation of the 

structure relative to the display surface appears to change.  This striking and unusual effect 

bears further investigation for the information it may provide about visual processes.  This 

effect is consistent with a model of visual spatial perception via an affine intermedaiate.   

Although not as useful as a display, per se, an exploration of the independent metrifica-

tion is of interest.  This could be achieved by populating the display volume with randomly 

oriented elements.  For instance, randomly oriented line segments of equal lengths could define 

the volume without producing the more effective cubic strucures used in this experiment.  
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These metric elements would not require the addition of a gross shear-strain offset to the space, 

removing the image confound.   

Perspective is an promising area for further study.  What is its effect?  Which perspective 

transformation is appropriate?  As the depth extent of a display is increased, a larger perspec-

tive transformation in mapping Euclidean space into the affine space is required.  The perspec-

tive transformation is inherently nonaffine, potentially reducing the effectiveness of an affine 

shear-strain SFM display.  It will be interesting to find the depth of a display structure that pro-

duces conflict between the requirements for affine transformations and the requirements for 

perspective.  One can presume that the conflict will result in the perception of a nonrigid 

structure.   

These areas for future study have a common theme: the parallel growth in understanding 

of the processes of perception and the development of effective interfaces between humans and 

technology.  This is a valuable collaboration of interests.  The power of knowledge is its 

universality of applicability.   
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8. APPENDIX 

PROGRAMMED INSTRUCTIONS TO SUBJECT 

 
    INSTRUCTIONS 
 
 
The purpose of this experiment is to explore 
the effects of viewing conditions on the 
perception of size.  In this experiment, 
there are no "right" answers. 
 
 
 Press any number to continue... 
   (Key press pages to next screen) 
 
 
This experiment will present different pyramids 
and other structures.  You will be asked to 
estimate the ratio of the height of each pyramid 
to the width of its base.  You are not judgingthe absolute size, just the ratio of height to 
width 
 
 
 Press any number to continue... 
   (Key press pages to next screen) 
 
 
The rating scale is a set of pyramid profiles 
in a numbered sequence.  Estimate which pyramid 
most nearly approximates the height-to-width 
ratio of the displayed pyramid. 
 
Enter your estimate by pressing the 
appropriate number key (either set). 
 
Each block of trials is randomized differently.   
 
Press any number key when you are ready to begin. 
 
 
 Press any number to continue... 
   (Key press clears screen, starts practice trials.) 


